Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Nature ; 581(7809): 411-414, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32461647

RESUMO

Overall water splitting, evolving hydrogen and oxygen in a 2:1 stoichiometric ratio,  using particulate photocatalysts is a potential means of achieving scalable and economically viable solar hydrogen production. To obtain high solar energy conversion efficiency, the quantum efficiency of the photocatalytic reaction must be increased over a wide range of wavelengths and semiconductors with narrow bandgaps need to be designed. However, the quantum efficiency associated with overall water splitting using existing photocatalysts is typically lower than ten per cent1,2. Thus, whether a particulate photocatalyst can enable a quantum efficiency of 100 per cent for the greatly endergonic water-splitting reaction remains an open question. Here we demonstrate overall water splitting at an external quantum efficiency of up to 96 per cent at wavelengths between 350 and 360 nanometres, which is equivalent to an internal quantum efficiency of almost unity, using a modified aluminium-doped strontium titanate (SrTiO3:Al) photocatalyst3,4. By selectively photodepositing the cocatalysts Rh/Cr2O3 (ref. 5) and CoOOH (refs. 3,6) for the hydrogen and oxygen evolution reactions, respectively, on different crystal facets of the semiconductor particles using anisotropic charge transport, the hydrogen and oxygen evolution reactions could be promoted separately. This enabled multiple consecutive forward charge transfers without backward charge transfer, reaching the upper limit of quantum efficiency for overall water splitting. Our work demonstrates the feasibility of overall water splitting free from charge recombination losses and introduces an ideal cocatalyst/photocatalyst structure for efficient water splitting.

2.
J Chem Phys ; 160(17)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38748026

RESUMO

We studied the photoluminescence decay kinetics of three nanosized anatase TiO2 photocatalysts (particle diameter: 7, 25, or 200 nm) at the pico- and nanosecond timescales for elucidating the origin of the luminescence. Luminescence spectra from these photocatalysts obtained under steady-state excitation conditions comprised green luminescence that decayed on the picosecond timescale and red luminescence that persisted at the nanosecond timescale. Among the photocatalysts with different sizes, there were marked differences in the rate of luminescence decay at the picosecond timescale (<600 ps), although the spectral shapes were comparable. The similarity in the spectral shape indicated that self-trapped excitons (STEs) directly populated in the bulk of the particle by light excitation emit the luminescence in a picosecond timescale, and the difference in the rate of luminescence decay originated from the quenching at the particle surface. Furthermore, we theoretically considered excitation light intensity dependence on the quantum yield of the luminescence and found that the quenching reaction was not limited by the diffusion of the STEs but by the reaction at the particle surface. Both the spectral shape and time-evolution of the red luminescence from the deep trapped excitons in the nanosecond timescale varied among the photocatalysts, suggesting that the trap sites in different photocatalysts have different characteristics with respect to luminescence. Therefore, the relation between trap states and photocatalytic activity will be elucidated from the red luminescence study.

3.
Chemistry ; 29(24): e202204058, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36764932

RESUMO

The hydrogen evolution reaction (HER) of Rh nanoparticles (RhNP) coated with an ultrathin layer of Cr-oxides (CrOx ) was investigated as a model electrode for the Cr2 O3 /Rh-metal core-shell-type cocatalyst system for photocatalytic water splitting. The CrOx layer was electrodeposited over RhNP on a transparent conductive fluorine-doped tin oxide (FTO) substrate. The CrOx layer on RhNP facilitates the electron transfer process at the CrOx /RhNP interface, leading to the increased current density for the HER. Impedance spectroscopic analysis revealed that the CrOx layer transferred protons via the hopping mechanism to the RhNP surface for HER. In addition, CrOx restricted electron transfer from the FTO to the electrolyte and/or RhNP and suppressed the backward reaction by limiting oxygen migration. This study clarifies the crucial role of the ultrathin CrOx layer on nanoparticulate cocatalysts and provides a cocatalyst design strategy for realizing efficient photocatalytic water splitting.

4.
J Chem Phys ; 158(11): 114704, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36948811

RESUMO

The time-of-flight method is a fundamental approach for characterizing the transport properties of semiconductors. Recently, the transient photocurrent and optical absorption kinetics have been simultaneously measured for thin films; pulsed-light excitation of thin films should give rise to non-negligible in-depth carrier injection. Yet, the effects of in-depth carrier injection on the transient currents and optical absorption have not yet been elucidated theoretically. Here, by considering the in-depth carrier injection in simulations, we found a 1/t1-α/2 initial time (t) dependence rather than the conventional 1/t1-α dependence under a weak external electric field, where α < 1 is the index of dispersive diffusion. The asymptotic transient currents are not influenced by the initial in-depth carrier injection and follow the conventional 1/t1+α time dependence. We also present the relation between the field-dependent mobility coefficient and the diffusion coefficient when the transport is dispersive. The field dependence of the transport coefficients influences the transit time in the photocurrent kinetics dividing two power-law decay regimes. The classical Scher-Montroll theory predicts that a1 + a2 = 2 when the initial photocurrent decay is given by 1/ta1 and the asymptotic photocurrent decay is given by 1/ta2 . The results shed light on the interpretation of the power-law exponent of 1/ta1 when a1 + a2 ≠ 2.

5.
J Chem Phys ; 159(14)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37815106

RESUMO

The Cattaneo-Vernotte model has been widely studied to take momentum relaxation into account in transport equations. Yet, the effect of reactions on the Cattaneo-Vernotte model has not been fully elucidated. At present, it is unclear how the current density associated with reactions can be expressed in the Cattaneo-Vernotte model. Herein, we derive a modified Cattaneo-Vernotte model by applying the projection operator method to the Fokker-Planck-Kramers equation with a reaction sink. The same modified Cattaneo-Vernotte model can be derived by a Grad procedure. We show that the inertial effect influences the reaction rate coefficient differently depending on whether the intrinsic reaction rate constant in the reaction sink term depends on the solute relative velocity or not. The momentum relaxation effect can be expressed by a modified Smoluchowski equation including a memory kernel using the Cattaneo-Vernotte model. When the intrinsic reaction rate constant is independent of the reactant velocity and is localized, the modified Smoluchowski equation should be generalized to include a reaction term without a memory kernel. When the intrinsic reaction rate constant depends on the relative velocity of reactants, an additional reaction term with a memory kernel is required because of competition between the current density associated with the reaction and the diffusive flux during momentum relaxation. The competition effect influences even the long-time reaction rate coefficient.

6.
Proc Natl Acad Sci U S A ; 117(44): 27655-27666, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33060294

RESUMO

Modular organization of the spinal motor system is thought to reduce the cognitive complexity of simultaneously controlling the large number of muscles and joints in the human body. Although modular organization has been confirmed in the hindlimb control system of several animal species, it has yet to be established in the forelimb motor system or in primates. Expanding upon experiments originally performed in the frog lumbar spinal cord, we examined whether costimulation of two sites in the macaque monkey cervical spinal cord results in motor activity that is a simple linear sum of the responses evoked by stimulating each site individually. Similar to previous observations in the frog and rodent hindlimb, our analysis revealed that in most cases (77% of all pairs) the directions of the force fields elicited by costimulation were highly similar to those predicted by the simple linear sum of those elicited by stimulating each site individually. A comparable simple summation of electromyography (EMG) output, especially in the proximal muscles, suggested that this linear summation of force field direction was produced by a spinal neural mechanism whereby the forelimb motor output recruited by costimulation was also summed linearly. We further found that the force field magnitudes exhibited supralinear (amplified) summation, which was also observed in the EMG output of distal forelimb muscles, implying a novel feature of primate forelimb control. Overall, our observations support the idea that complex movements in the primate forelimb control system are made possible by flexibly combined spinal motor modules.


Assuntos
Braço/fisiologia , Medula Cervical/fisiologia , Movimento/fisiologia , Músculo Esquelético/fisiologia , Animais , Braço/inervação , Estimulação Elétrica/instrumentação , Eletrodos Implantados , Eletromiografia/instrumentação , Potencial Evocado Motor/fisiologia , Macaca , Masculino , Músculo Esquelético/inervação
7.
Angew Chem Int Ed Engl ; 62(42): e202310607, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37653542

RESUMO

Photocatalytic water splitting is an ideal means of producing hydrogen in a sustainable manner, and developing highly efficient photocatalysts is a vital aspect of realizing this process. The photocatalyst Y2 Ti2 O5 S2 (YTOS) is capable of absorbing at wavelengths up to 650 nm and exhibits outstanding thermal and chemical durability compared with other oxysulfides. However, the photocatalytic performance of YTOS synthesized using the conventional solid-state reaction (SSR) process is limited owing to the large particle sizes and structural defects associated with this synthetic method. Herein, we report the synthesis of YTOS particles by a flux-assisted technique. The enhanced mass transfer efficiency in the flux significantly reduced the preparation time compared with the SSR method. In addition, the resulting YTOS showed improved photocatalytic H2 and O2 evolution activity when loaded with Rh and Co3 O4 co-catalysts, respectively. These improvements are attributed to the reduced particle size and enhanced crystallinity of the material as well as the slower decay of photogenerated carriers on a nanosecond to sub-microsecond time range. Further optimization of this flux-assisted method together with suitable surface modification is expected to produce high-quality YTOS crystals with superior photocatalytic activity.

8.
Angew Chem Int Ed Engl ; 62(46): e202312938, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37786233

RESUMO

Photocatalytic water splitting is a simple means of converting solar energy into storable hydrogen energy. Narrow-band gap oxysulfide photocatalysts have attracted much attention in this regard owing to the significant visible-light absorption and relatively high stability of these compounds. However, existing materials suffer from low efficiencies due to difficulties in synthesizing these oxysulfides with suitable degrees of crystallinity and particle sizes, and in constructing effective reaction sites. The present work demonstrates the production of a Gd2 Ti2 O5 S2 (λ<650 nm) photocatalyst capable of efficiently driving photocatalytic reactions. Single-crystalline, plate-like Gd2 Ti2 O5 S2 particles with atomically ordered surfaces were synthesized by flux and chemical etching methods. Ultrafine Pt-IrO2 cocatalyst particles that promoted hydrogen (H2 ) and oxygen (O2 ) evolution reactions were subsequently loaded on the Gd2 Ti2 O5 S2 while ensuring an intimate contact by employing a microwave-heating technique. The optimized Gd2 Ti2 O5 S2 was found to evolve H2 from an aqueous methanol solution with a remarkable apparent quantum efficiency of 30 % at 420 nm. This material was also stable during O2 evolution in the presence of a sacrificial reagent. The results presented herein demonstrates a highly efficient narrow-band gap oxysulfide photocatalyst with potential applications in practical solar hydrogen production.

9.
Phys Chem Chem Phys ; 24(29): 17485-17495, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35822609

RESUMO

Visible-light responsive photocatalytic materials are expected to be deployed for practical use in photocatalytic water splitting. One of the promising materials as a p-type semiconductor, oxysulfides, was investigated in terms of the local charge carrier behavior for each particle by using a home-built time-resolved microscopic technique in combination with clustering analysis. We could differentiate electron and hole trapping to the surface states and the following recombination on a micron-scale from the nanosecond to microsecond order. The map of the charge carrier type revealed that charge trapping sites for electrons and holes were spatially separated within each particle/aggregate. Furthermore, the effect of the rhodium cocatalyst was recognized as a new electron pathway, trapping to the rhodium site and the following recombination, which was delayed compared with the original electron recombination process. The Rh effect was discussed based on the phenomenological simulation, revealing a possible reason for the decay was due to the anisotropic diffusion of charge carriers in oxysulfides or the interfacial energy barrier at the interface.

10.
J Neurophysiol ; 125(5): 1580-1597, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33729869

RESUMO

The central nervous system (CNS) may produce coordinated motor outputs via the combination of motor modules representable as muscle synergies. Identification of muscle synergies has hitherto relied on applying factorization algorithms to multimuscle electromyographic data (EMGs) recorded during motor behaviors. Recent studies have attempted to validate the neural basis of the muscle synergies identified by independently retrieving the muscle synergies through CNS manipulations and analytic techniques such as spike-triggered averaging of EMGs. Experimental data have demonstrated the pivotal role of the spinal premotor interneurons in the synergies' organization and the presence of motor cortical loci whose stimulations offer access to the synergies, but whether the motor cortex is also involved in organizing the synergies has remained unsettled. We argue that one difficulty inherent in current approaches to probing the synergies' neural basis is that the EMG generative model based on linear combination of synergies and the decomposition algorithms used for synergy identification are not grounded on enough prior knowledge from neurophysiology. Progress may be facilitated by constraining or updating the model and algorithms with knowledge derived directly from CNS manipulations or recordings. An investigative framework based on evaluating the relevance of neurophysiologically constrained models of muscle synergies to natural motor behaviors will allow a more sophisticated understanding of motor modularity, which will help the community move forward from the current debate on the neural versus nonneural origin of muscle synergies.


Assuntos
Sistema Nervoso Central/fisiologia , Eletromiografia , Modelos Neurológicos , Atividade Motora/fisiologia , Músculo Esquelético/fisiologia , Desempenho Psicomotor/fisiologia , Animais , Humanos
11.
Phys Chem Chem Phys ; 23(27): 14803-14810, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34212162

RESUMO

Thermogalvanic cells have attracted considerable attention because of their potential to directly convert waste heat into electricity by using redox reactions under continuous operation with a simple, cost-effective design. An increase in the Seebeck coefficient owing to the interactions between the redox ions and the additives has been reported in recent studies. The configuration entropy of the small additives coordinated to a large ion is calculated to analyze the Seebeck coefficient obtained from the entropy difference between the redox pairs. The recently reported increase in the Seebeck coefficient owing to the introduction of guanidinium (Gdm) or urea into the Fe(CN)64-/Fe(CN)63- electrolyte is analyzed using the theoretical results. Furthermore, qualitative and quantitative analyses were also performed to determine the influence of the affinity for the additives on the entropy difference of the redox couples and on the Seebeck coefficient. This study also demonstrates the enhancement in the Seebeck coefficient caused by a membrane isolating the binding species into an appropriate hot/cold zone.

12.
J Chem Phys ; 154(13): 134104, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33832249

RESUMO

The elegant expression of Förster that predicts the well-known 1/R6 distance (R) dependence of the rate of energy transfer, although widely used, was derived using several approximations. Notable among them is the neglect of the vibrational relaxation in the reactant (donor) and product (acceptor) manifolds. Vibrational relaxation can play an important role when the energy transfer rate is faster than the vibrational relaxation rate. Under such conditions, donor to acceptor energy transfer can occur from the excited vibrational states. This phenomenon is not captured by the usual formulation based on the overlap of donor emission and acceptor absorption spectra. Here, we develop a Green's function-based generalized formalism and obtain an exact solution for the excited state population relaxation and the rate of energy transfer in the presence of vibrational relaxation. We find that the application of the well-known Förster's expression might lead to overestimation of R.

13.
Proc Natl Acad Sci U S A ; 114(32): 8643-8648, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28739958

RESUMO

Grasping is a highly complex movement that requires the coordination of multiple hand joints and muscles. Muscle synergies have been proposed to be the functional building blocks that coordinate such complex motor behaviors, but little is known about how they are implemented in the central nervous system. Here we demonstrate that premotor interneurons (PreM-INs) in the primate cervical spinal cord underlie the spatiotemporal patterns of hand muscle synergies during a voluntary grasping task. Using spike-triggered averaging of hand muscle activity, we found that the muscle fields of PreM-INs were not uniformly distributed across hand muscles but rather distributed as clusters corresponding to muscle synergies. Moreover, although individual PreM-INs have divergent activation patterns, the population activity of PreM-INs reflects the temporal activation of muscle synergies. These findings demonstrate that spinal PreM-INs underlie the muscle coordination required for voluntary hand movements in primates. Given the evolution of neural control of primate hand functions, we suggest that spinal premotor circuits provide the fundamental coordination of multiple joints and muscles upon which more fractionated control is achieved by superimposed, phylogenetically newer, pathways.


Assuntos
Força da Mão/fisiologia , Mãos/fisiologia , Músculo Esquelético/fisiologia , Rede Nervosa/fisiologia , Medula Espinal/fisiologia , Animais , Feminino , Macaca mulatta , Masculino , Músculo Esquelético/inervação
14.
J Physiol ; 597(19): 5025-5040, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31397900

RESUMO

KEY POINTS: We demonstrated optical activation of primary somatosensory afferents with high selectivity to fast-conducting fibres by means of adeno-associated virus 9 (AAV9)-mediated gene transduction in dorsal root ganglion (DRG) neurons. AVV9 expressing green fluorescent protein showed high selectivity and transduction efficiency for fast-conducting, large-sized DRG neurons. Compared with conventional electrical stimulation, optically elicited volleys in primary afferents had higher sensitivity with stimulus amplitude, but lower sensitivity with stimulus frequency. Optically elicited dorsal root volleys activated postsynaptic neurons in the segmental spinal pathway. This proposed technique will help establish the causal relationships between somatosensory afferent inputs and neural responses in the CNS as well as behavioural outcomes in higher mammals where transgenic animals are not available. ABSTRACT: Previously, fundamental structures and their mode of action in the spinal reflex circuit were determined by confirming their input-output relationship using electrophysiological techniques. In those experiments, the electrical stimulation of afferent fibres was used as a core element to identify different types of reflex pathways; however, a major disadvantage of this technique is its non-selectivity. In this study, we investigated the selective activation of large-diameter afferents by optogenetics combined with a virus vector transduction technique (injection via the sciatic nerve) in non-transgenic male Jcl:Wistar rats. We found that green fluorescent protein gene transduction of rat dorsal root ganglion (DRG) neurons with a preference for medium-to-large-sized cells was achieved using the adeno-associated virus 9 (AAV9) vector compared with the AAV6 vector (P = 0.021). Furthermore, the optical stimulation of Channelrhodopsin 2 (ChR2)-expressing DRG neurons (transduced by AAV9) produced compound action potentials in afferent nerves originating from fast-conducting nerve fibres. We also confirmed that physiological responses to different stimulus amplitudes were comparable between optogenetic and electrophysiological activation. However, compared with electrically elicited responses, the optically elicited responses had lower sensitivity with stimulus frequency. Finally, we showed that afferent volleys evoked by optical stimulation were sufficient to activate postsynaptic neurons in the spinal reflex arc. These results provide new ways for understanding the role of sensory afferent input to the central nervous system regarding behavioural control, especially when genetically manipulated animals are not available, such as higher mammals including non-human primates.


Assuntos
Vias Aferentes/fisiologia , Channelrhodopsins/metabolismo , Optogenética , Reflexo/fisiologia , Animais , Channelrhodopsins/genética , Dependovirus , Masculino , Ratos , Ratos Wistar
15.
Neuroimage ; 197: 512-526, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31015029

RESUMO

Remarkable advances have recently been made in the development of Brain-Machine Interface (BMI) technologies for restoring or enhancing motor function. However, the application of these technologies may be limited to patients in static conditions, as these developments have been largely based on studies of animals (e.g., non-human primates) in constrained movement conditions. The ultimate goal of BMI technology is to enable individuals to move their bodies naturally or control external devices without physical constraints. Here, we demonstrate accurate decoding of muscle activity from electrocorticogram (ECoG) signals in unrestrained, freely behaving monkeys. We recorded ECoG signals from the sensorimotor cortex as well as electromyogram signals from multiple muscles in the upper arm while monkeys performed two types of movements with no physical restraints, as follows: forced forelimb movement (lever-pull task) and natural whole-body movement (free movement within the cage). As in previous reports using restrained monkeys, we confirmed that muscle activity during forced forelimb movement was accurately predicted from simultaneously recorded ECoG data. More importantly, we demonstrated that accurate prediction of muscle activity from ECoG data was possible in monkeys performing natural whole-body movement. We found that high-gamma activity in the primary motor cortex primarily contributed to the prediction of muscle activity during natural whole-body movement as well as forced forelimb movement. In contrast, the contribution of high-gamma activity in the premotor and primary somatosensory cortices was significantly larger during natural whole-body movement. Thus, activity in a larger area of the sensorimotor cortex was needed to predict muscle activity during natural whole-body movement. Furthermore, decoding models obtained from forced forelimb movement could not be generalized to natural whole-body movement, which suggests that decoders should be built individually and according to different behavior types. These results contribute to the future application of BMI systems in unrestrained individuals.


Assuntos
Eletrocorticografia/métodos , Eletromiografia/métodos , Músculo Esquelético/fisiologia , Córtex Sensório-Motor/fisiologia , Animais , Interfaces Cérebro-Computador , Callithrix , Feminino , Movimento
16.
Angew Chem Int Ed Engl ; 58(8): 2300-2304, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30548747

RESUMO

Photoelectrochemical water splitting is regarded as a promising approach to the production of hydrogen, and the development of efficient photoelectrodes is one aspect of realizing practical systems. In this work, transparent Ta3 N5 photoanodes were fabricated on n-type GaN/sapphire substrates to promote O2 evolution in tandem with a photocathode, to realize overall water splitting. Following the incorporation of an underlying GaN layer, a photocurrent of 6.3 mA cm-2 was achieved at 1.23 V vs. a reversible hydrogen electrode. The transparency of Ta3 N5 to wavelengths longer than 600 nm allowed incoming solar light to be transmitted to a CuInSe2 (CIS), which absorbs up to 1100 nm. A stand-alone tandem cell with a serially-connected dual-CIS unit terminated with a Pt/Ni electrode was thus constructed for H2 evolution. This tandem cell exhibited a solar-to-hydrogen energy conversion efficiency greater than 7 % at the initial stage of the reaction.

17.
J Neurosci ; 37(10): 2612-2626, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28159911

RESUMO

If not properly regulated, the large amount of reafferent sensory signals generated by our own movement could destabilize the CNS. We investigated how input from peripheral nerves to spinal cord is modulated during behavior. We chronically stimulated the deep radial nerve (DR; proprioceptive, wrist extensors), the median nerve (M; mixed, wrist flexors and palmar skin) and the superficial radial nerve (SR; cutaneous, hand dorsum) while four monkeys performed a delayed wrist flexion-extension task. Spinal neurons putatively receiving direct sensory input were defined based on their evoked response latency following nerve stimulation. We compared the influence of behavior on the evoked response (responsiveness to a specific peripheral input) and firing rate of 128 neuron-nerve pairs based on their source nerve. Firing rate increased during movement regardless of source nerve, whereas evoked response modulation was strikingly nerve-dependent. In SR (n = 47) and M (n = 27) neurons (cutaneous or mixed input), the evoked response was suppressed during wrist flexion and extension. In contrast, in DR neurons (n = 54, pure proprioceptive input), the evoked response was facilitated exclusively during movements corresponding to the contraction of DR spindle-bearing muscles (i.e., wrist extension). Furthermore, modulations of firing rate and evoked response were uncorrelated in SR and M neurons, whereas they tended to be positively comodulated in DR neurons. Our results suggest that proprioceptive and cutaneous inputs to the spinal cord are modulated differently during voluntary movements, suggesting a refined gating mechanism of sensory signals according to behavior.SIGNIFICANCE STATEMENT Voluntary movements produce copious sensory signals, which may overwhelm the CNS if not properly regulated. This regulation is called "gating" and occurs at several levels of the CNS. To evaluate the specificity of sensory gating, we investigated how different sources of somatosensory inputs to the spinal cord were modulated while monkeys performed wrist movements. We recorded activity from spinal neurons that putatively received direct connections from peripheral nerves while stimulating their source nerves, and measured the evoked responses. Whereas cutaneous inputs were suppressed regardless of the type of movement, muscular inputs were specifically facilitated during relevant movements. We conclude that, even at the spinal level, sensory gating is a refined and input-specific process.


Assuntos
Retroalimentação Sensorial/fisiologia , Neurônios Motores/fisiologia , Movimento/fisiologia , Nervos Periféricos/fisiologia , Medula Espinal/fisiologia , Análise e Desempenho de Tarefas , Animais , Macaca , Masculino , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Plasticidade Neuronal/fisiologia
18.
J Am Chem Soc ; 139(4): 1675-1683, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28059504

RESUMO

Development of sunlight-driven water splitting systems with high efficiency, scalability, and cost-competitiveness is a central issue for mass production of solar hydrogen as a renewable and storable energy carrier. Photocatalyst sheets comprising a particulate hydrogen evolution photocatalyst (HEP) and an oxygen evolution photocatalyst (OEP) embedded in a conductive thin film can realize efficient and scalable solar hydrogen production using Z-scheme water splitting. However, the use of expensive precious metal thin films that also promote reverse reactions is a major obstacle to developing a cost-effective process at ambient pressure. In this study, we present a standalone particulate photocatalyst sheet based on an earth-abundant, relatively inert, and conductive carbon film for efficient Z-scheme water splitting at ambient pressure. A SrTiO3:La,Rh/C/BiVO4:Mo sheet is shown to achieve unassisted pure-water (pH 6.8) splitting with a solar-to-hydrogen energy conversion efficiency (STH) of 1.2% at 331 K and 10 kPa, while retaining 80% of this efficiency at 91 kPa. The STH value of 1.0% is the highest among Z-scheme pure water splitting operating at ambient pressure. The working mechanism of the photocatalyst sheet is discussed on the basis of band diagram simulation. In addition, the photocatalyst sheet split pure water more efficiently than conventional powder suspension systems and photoelectrochemical parallel cells because H+ and OH- concentration overpotentials and an IR drop between the HEP and OEP were effectively suppressed. The proposed carbon-based photocatalyst sheet, which can be used at ambient pressure, is an important alternative to (photo)electrochemical systems for practical solar hydrogen production.

19.
J Neurophysiol ; 117(2): 796-807, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27974451

RESUMO

Presynaptic inhibition of the sensory input from the periphery to the spinal cord can be evaluated directly by intra-axonal recording of primary afferent depolarization (PAD) or indirectly by intraspinal microstimulation (excitability testing). Excitability testing is superior for use in normal behaving animals, because this methodology bypasses the technically challenging intra-axonal recording. However, use of excitability testing on the muscle or joint afferent in intact animals presents its own technical challenges. Because these afferents, in many cases, are mixed with motor axons in the peripheral nervous system, it is crucial to dissociate antidromic volleys in the primary afferents from orthodromic volleys in the motor axon, both of which are evoked by intraspinal microstimulation. We have demonstrated in rats that application of a paired stimulation protocol with a short interstimulus interval (ISI) successfully dissociated the antidromic volley in the nerve innervating the medial gastrocnemius muscle. By using a 2-ms ISI, the amplitude of the volleys evoked by the second stimulation was decreased in dorsal root-sectioned rats, but the amplitude did not change or was slightly increased in ventral root-sectioned rats. Excitability testing in rats with intact spinal roots indicated that the putative antidromic volleys exhibited dominant primary afferent depolarization, which was reasonably induced from the more dorsal side of the spinal cord. We concluded that excitability testing with a paired-pulse protocol can be used for studying presynaptic inhibition of somatosensory afferents in animals with intact spinal roots.NEW & NOTEWORTHY Excitability testing of primary afferents has been used to evaluate presynaptic modulation of synaptic transmission in experiments conducted in vivo. However, to apply this method to muscle afferents of animals with intact spinal roots, it is crucial to dissociate antidromic and orthodromic volleys induced by spinal microstimulation. We propose a new method to make this dissociation possible without cutting spinal roots and demonstrate that it facilitates excitability testing of muscle afferents.


Assuntos
Potenciais de Ação/fisiologia , Fenômenos Biofísicos/fisiologia , Potenciais Evocados/fisiologia , Músculo Esquelético/fisiologia , Neurônios Aferentes/fisiologia , Medula Espinal/fisiologia , Animais , Biofísica , Estimulação Elétrica , Masculino , Ratos , Ratos Wistar , Traumatismos da Medula Espinal , Raízes Nervosas Espinhais/fisiologia , Fatores de Tempo
20.
Biol Reprod ; 97(5): 772-780, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29045563

RESUMO

Controllable transgene expression systems are indispensable tools for the production of animal models of disease to investigate protein functions at defined periods. However, in nonhuman primates that share genetic, physiological, and morphological similarities with humans, genetic modification techniques have not been well established; therefore, the establishment of novel transgenic models with controllable transgene expression systems will be valuable tools to understand pathological mechanism of human disease. In the present study, we successfully generated transgenic marmosets using a tetracyclin-inducible transgene expression (tet-on) system as a neurodegenerative disease model. The mutant human ataxin 3 gene controlled by the tet-on system was introduced into marmoset embryos via lentiviral transduction, and 34 transgene-introduced embryos were transferred into the uteri of surrogate mothers. Seven live offspring (TET1-7) were obtained, of which four were transgenic. Fibroblasts from TET1 and 3 revealed that inducible transgene expression had occurred after treatment with 10 µg/mL of doxycycline, while treatment with doxycycline via drinking water resulted in 1.7- to 1.8-fold inducible transgene expression compared with before treatment. One transgenic second-generation offspring (TET3-3) was obtained from TET3, and doxycycline-inducible transgene expression in its fibroblasts showed that TET3-3 maintained a high transgene expression level that matched its parent. In conclusion, we established a novel transgenic marmoset line carrying the mutant human ataxin 3 gene controlled by the tet-on system. The development of nonhuman primate models with controllable transgene expression systems will be useful for the identification of disease biomarkers and evaluation of the efficacy and metabolic profiles of therapeutic candidates.


Assuntos
Ataxina-3/genética , Callithrix/genética , Doenças Neurodegenerativas/genética , Animais , Animais Geneticamente Modificados , Sequência de Bases , DNA/genética , Doxiciclina , Orelha , Feminino , Fibroblastos/fisiologia , Masculino , Regiões Promotoras Genéticas , Injeções de Esperma Intracitoplásmicas , Transcrição Gênica , Ativação Transcricional , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA