Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Faraday Discuss ; 243(0): 179-197, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37017083

RESUMO

Low-temperature ammonia synthesis by applying an electric field to a solid heterogeneous catalyst was investigated to realize an on-demand, on-site catalytic process for converting distributed renewable energy into ammonia. By applying an electric field to the catalyst, even at low temperatures, the reaction proceeds efficiently by an "associative mechanism" in which proton-conducting species on the support surface promote the formation of N2Had intermediates through surface protonics. Kinetics, isotope exchange, infrared spectroscopy, X-ray spectroscopy, and AC impedance analysis were performed to clarify the effect of metal and catalyst support structure on the reaction, and an evaluation method for the surface protonics of the support was established to analyze the reaction mechanism, and further analysis using computational chemistry was also conducted. The elementary step determining catalytic activity changed from N2 dissociation to N2H formation, and this difference resulted in high activity for ammonia synthesis at low temperatures even when using base metal catalysts such as Fe and Ni.

2.
Phys Chem Chem Phys ; 24(46): 28141-28149, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36349733

RESUMO

Low-cost carbon dioxide (CO2) capture technologies have been studied widely. Among such technologies, the control of CO2 adsorption by the application of an electric field to solid materials has been shown to be a promising technology that can combine high CO2 adsorption with low energy consumption. Suitable materials must be found for electric field-assisted CO2 adsorption. For this study, the CO2 adsorption energies of CeO2 partially substituted with hetero-cations were investigated using theoretical calculations. The differences in adsorption performance attributable to the application of an electric field were clarified for different doped cations. The results show that the amount of change in the CO2 adsorption energy by the application of an electric field depended on the different doped cations. Furthermore, it is found that this difference in cations is related to the electronegativity of the doped cations. These results suggest a tuning strategy for the material properties necessary for CO2 capture and separation using an electric field.

3.
Faraday Discuss ; 229: 341-358, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33634302

RESUMO

The process of combining heterogeneous catalysts and direct current (DC) electric fields can achieve high catalytic activities, even under mild conditions (<500 K) with relatively low electrical energy consumption. Hydrogen production by steam reforming of methane, aromatics and alcohol, dehydrogenation of methylcyclohexane, dry reforming of methane, and ammonia synthesis are known to proceed at low temperatures in an electric field. In situ/operando analyses are conducted using IR, Raman, X-ray absorption fine structure, electrochemical impedance spectroscopy, and isotopic kinetic analyses to elucidate the reaction mechanism for these reactions at low temperatures. The results show that surface proton hopping by a DC electric field, called surface protonics, is important for these reactions at low temperatures because of the higher surface adsorbate concentrations at lower temperatures.

4.
Phys Chem Chem Phys ; 23(8): 4509-4516, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33523062

RESUMO

Hydrogen (H) atom adsorption and migration over the CeO2-based materials surface are of great importance because of its wide applications to catalytic reactions and electrochemical devices. Therefore, comprehensive knowledge for controlling the H atom adsorption and migration over CeO2-based materials is crucially important. For controlling H atom adsorption and migration, we investigated irreducible divalent, trivalent, and quadrivalent heterocation-doping effects on H atom adsorption and migration over the CeO2(111) surface using density functional theory (DFT) calculations. Results revealed that the electron-deficient lattice oxygen (Olat) and the flexible CeO2 matrix played key roles in strong adsorption of H atoms. Heterocations with smaller valence and smaller ionic radius induced the electron-deficient Olat. In addition, smaller cation doping enhanced the CeO2 matrix flexibility. Moreover, we confirmed the influence of H atom adsorption controlled by doping on surface proton migration (i.e. surface protonics) and catalytic reaction involving surface protonics (NH3 synthesis in an electric field). Results confirmed clear correlation between H atom adsorption energy and surface protonics.

5.
J Chem Phys ; 154(16): 164705, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33940849

RESUMO

The performance of metal atoms chemically bonded to oxide supports cannot be explained solely by the intrinsic properties of the metals such as the d-band center. Herein, we present an in-depth study of the correlation between metal-oxide interactions and the properties of the supported metal using CO adsorption on Me1 (Fe1, Co1, and Ni1) loaded over CeO2 (111) doped with divalent (Ca, Sr, and Ba), trivalent (Al, Ga, Sc, Y, and La), and quadrivalent (Hf and Zr) heterocations. CO adsorption over Me1 is strongly dependent on the binding energies of Me1. Two factors led to this trend. First, the extent of the Me1-surface oxygen (Me1-O) bond relaxation during CO adsorption played a key role. Second, the d-band center shifted drastically because of charge transfer to the oxides. The shift is related to the oxophilicity of metals. Adsorption energies of Me1 over oxides include the contributions of the factors described above. Therefore, we can predict the activities of Me1 using the strength of anchoring by oxide supports. Results show that smaller ionic radii of the doped heterocations were associated with more tightly bound Me1. This finding sheds light on the possibility of heterocation-doping manipulating the reactivity of the Me1 catalyst based on theoretical predictions.

6.
Phys Chem Chem Phys ; 22(40): 22852-22863, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33033817

RESUMO

Hydrogen migration over a metal oxide surface is an extremely important factor governing the activity and selectivity of various heterogeneous catalytic reactions. Passive migration of hydrogen governed by a concentration gradient is called hydrogen spillover, which has been investigated broadly for a long time. Recently, well-fabricated samples and state-of-the-art measurement techniques such as operando spectroscopy and electrochemical analysis have been developed, yielding findings that have elucidated the migration mechanism and novel utilisation of hydrogen spillover. Furthermore, great attention has been devoted to surface protonics, which is hydrogen migration activated by an electric field, as applicable for novel low-temperature catalysis. This article presents an overview of catalysis related to hydrogen hopping, sophisticated analysis techniques for hydrogen migration, and low-temperature catalysis using surface protonics.

7.
J Chem Phys ; 152(1): 014707, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31914759

RESUMO

Understanding heteroatom doping effects on the interaction between H2O and cerium oxide (ceria, CeO2) surfaces is crucially important for elucidating heterogeneous catalytic reactions of CeO2-based oxides. Surfaces of CeO2 (111) doped with quadrivalent (Ti, Zr), trivalent (Al, Ga, Sc, Y, La), or divalent (Ca, Sr, Ba) cations are investigated using density functional theory (DFT) calculations modified for onsite Coulomb interactions (DFT + U). Trivalent (except for Al) and divalent cation doping induces the formation of intrinsic oxygen vacancy (Ovac), which is backfilled easily by H2O. Partially OH-terminated surfaces are formed. Furthermore, dissociative adsorption of H2O is simulated on the OH terminated surfaces (for trivalent or divalent cation doped models) and pure surfaces (for Al and quadrivalent cation doped surfaces). The ionic radius is crucially important. In fact, H2O dissociates spontaneously on the small cations. Although a slight change is induced by doping as for the H2O adsorption energy at Ce sites, the H2O dissociative adsorption at Ce sites is well-assisted by dopants with a smaller ionic radius. In terms of the amount of promoted Ce sites, the arrangement of dopant sites is also fundamentally important.

9.
Chem Rec ; 17(8): 726-738, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28146343

RESUMO

Direct conversion of methane, other hydrocarbons, and alcohol at lower temperatures can be achieved using plasma or an electric field and catalysts. Non-equilibrium plasma enables activation of stable molecules including methane, carbon dioxide, and water, even at low temperatures, by virtue of high electron energy. Use of a hybrid system of plasma and catalyst provided high conversion and selectivity to products by virtue of adsorption on the catalyst. Imposing a DC electric field to the catalyst bed also promotes catalytic reactions, even at low temperatures. Two mechanisms for electro-catalytic reactions are proposed for the DC electric field imposition: reactant activation by surface protonics and production of active surface oxygen species on the catalyst. This review presents summaries of these novel processes.

11.
Chem Commun (Camb) ; 60(12): 1563-1566, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38204414

RESUMO

Lean-burn engines are gaining attention for their lower CO2 emissions, higher thermal efficiency, and improved fuel economy compared to traditional combustion engines. However, they present some difficulty for reducing nitrogen oxides (NOx) because of residual oxygen. To address this difficulty, NOx storage reduction (NSR) system, which combines noble metals and NOx adsorbents, is developed as a viable approach. But it requires cyclic operation, which adversely affects fuel efficiency. A novel approach proposed in this work is electric field-assisted lean NOx reduction, which applies an electric field to the NSR catalyst during lean conditions. This innovation uses surplus vehicle electricity for exhaust purification, enhances hydrogen transfer, and improves NOx reduction, even at low temperatures. Tests with a 3 wt% Pt-16 wt% BaO/CeO2 catalyst demonstrate markedly higher NOx conversion to N2 (13.1% vs. 2.9% without an electric field). This process is effective with extended electric field exposure, doubling the conversion rate. Electric field-assisted lean NOx reduction, by improving NSR technology, can enhance NOx conversion efficiency, reduce emissions, and optimize fuel efficiency in lean-burn engines.

12.
Dalton Trans ; 53(20): 8576-8583, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38655658

RESUMO

Atomic substitution is a promising approach for controlling structures and properties for developing clusters with desired responses. Although many possible coordination candidates could be deduced for substitution, not all can be prepared. Therefore, predicting the correlation between structures and physical properties is important prior to synthesis. In this study, regarding Keggin-type polyoxometalates (POMs) as a model cluster, the dominant factors affecting the protonation were investigated by atomic substitutions and geometry changes. The valence of Keggin-type POMs and the constituent elements of the cluster shell structure affect the charge and potential distribution, which change the protonation sites. Furthermore, the valence of Keggin-type POMs and the bond length between the core and shell structure determine the protonation energy. These factors also affect the HOMO-LUMO gap, which governs photochemical and redox reactions. These governing factors derived from actual parameters of the α-isomer of Keggin-type POMs enabled us to deduce the protonation energy of the ß-isomer, which is more difficult to prepare and isolate than the α-isomer.

13.
RSC Adv ; 14(14): 9869-9877, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38528930

RESUMO

Ammonia is an extremely important storage and transport medium for renewable energy, and technology is expected to produce it on demand and onsite using renewable energy. Applying a DC (direct current) to a solid catalyst layer with semiconducting properties makes ammonia synthesis highly efficient, even at low temperatures (approximately 400 K). In this process, oxide supports with semiconducting properties play important roles as metal supports and conduction fields for electrons and protons. The influence of the degree of particle aggregation on the support properties and ammonia synthesis using an electric field was evaluated for CeO2, which is the best material for this purpose because of its semiconducting properties. The results showed that controlling the aggregation structure of the crystalline particles could significantly influence the surface conductivity of protons and electrons; thus, the activity could be largely controlled. The Ru-CeO2 interaction could also be controlled by changing the crystallinity, which suppressed the aggregation of the supported Ru and significantly improved the ammonia synthesis activity using an electric field at low temperatures.

14.
Chem Commun (Camb) ; 59(74): 11061-11064, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37650129

RESUMO

Reverse water gas shift (RWGS) can convert CO2 into CO by using renewable hydrogen. However, this important reaction is endothermic and equilibrium constrained, and thus traditionally performed at 900 K or higher temperatures using solid catalysts. In this work, we found that RWGS can be carried out at low temperatures without equilibrium constraints using a redox method called chemical looping (CL), which uses the reduction and oxidation of solid oxide surfaces. When using our developed MGa2Ox (M = Ni, Cu, Co) materials, the reaction can proceed with almost 100% CO2 conversion even at temperatures as low as 673 K. This allows RWGS to proceed without equilibrium constraints at low temperatures and greatly decreases the cost for the separation of unreacted CO2 and produced CO. Our novel gallium-based material is the first material that can achieve high conversion rates at low temperatures in reverse water gas shift using chemical looping (RWGS-CL). Ni outperformed Cu and Co as a dopant, and the redox mechanism of NiGa2Ox is a phase change due to the redox of Ga during the RWGS-CL process. This major finding is a big step forward for the effective utilization of CO2 in the future.

15.
JACS Au ; 3(4): 991-996, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37124301

RESUMO

Quantum annealing has been used to predict molecular adsorption on solid surfaces. Evaluation of adsorption, which takes place in all solid surface reactions, is a crucially important subject for study in various fields. However, predicting the most stable coordination by theoretical calculations is challenging for multimolecular adsorption because there are numerous candidates. This report presents a novel method for quick adsorption coordination searches using the quantum annealing principle without combinatorial explosion. This method exhibited much faster search and more stable molecular arrangement findings than conventional methods did, particularly in a high coverage region. We were able to complete a configurational prediction of the adsorption of 16 molecules in 2286 s (including 2154 s for preparation, only required once), whereas previously it has taken 38 601 s. This approach accelerates the tuning of adsorption behavior, especially in composite materials and large-scale modeling, which possess more combinations of molecular configurations.

16.
Chem Commun (Camb) ; 58(77): 10789-10792, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36093590

RESUMO

This report is the first describing a study quantitatively analysing aspects of oxide surface protonics in a dry H2 atmosphere. Elucidating surface protonics is important for electrochemical and catalytic applications. In this study, AC impedance spectroscopy was used to investigate surface conduction properties of porous CeO2 at low temperatures (423-573 K) and in a dry H2 atmosphere. Results demonstrated that the conductivity increased by several orders of magnitude when H2 was supplied. Dissociative adsorption of H2 contributes to conduction by forming proton-electron pairs. Also, H/D isotope exchange studies confirmed protons as the dominant conduction carriers. Furthermore, H2 adsorption equilibrium modelling based on the Langmuir mechanism was applied to explain the H2 partial pressure dependence of conductivity. For the first time, the obtained model explains the experimentally obtained results both qualitatively and quantitatively. These findings represent new insights into surface protonics in H2 atmosphere.

17.
Chem Commun (Camb) ; 58(31): 4837-4840, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35297931

RESUMO

CO2 conversion to CO by reverse water-gas shift using chemical looping (RWGS-CL) can be conducted at lower temperatures (ca. 723-823 K) than the conventional catalytic RWGS (>973 K), and has been attracting attention as an efficient process for CO production from CO2. In this study, Co-In2O3 was developed as an oxygen storage material (OSM) that can realize an efficient RWGS-CL process. Co-In2O3 showed a high CO2 splitting rate in the mid-temperature range (723-823 K) compared with previously reported materials and had high durability through redox cycles. Importantly, the maximum CO2 conversion in the CO2 splitting step (ca. 80%) was much higher than the equilibrium conversion of catalytic RWGS in the mid-temperature range, indicating that Co-In2O3 is a suitable OSM for the RWGS-CL process.

18.
RSC Adv ; 12(39): 25565-25569, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199331

RESUMO

The effect of OH-groups on the surface of a Ni catalyst for low-temperature (473 K) steam reforming of methane in an electric field (EF) was investigated. Ni-doped YSZ (Zr0.65Y0.05Ni0.3O2) was chosen as a highly active catalyst for this purpose. The effects on catalyst activity of adding hydrogen and steam in the pre-treatment were assessed with and without EF. When an EF was applied, activity increased irrespective of the electronic state of Ni, whereas the metallic Ni state was necessary for activity without EF. Furthermore, the highest activity with EF was observed for the pre-treatment with a mixture of H2 and H2O. Investigation of the superiority using XPS measurements showed an increase in the amount of Ni(OH)2, OH groups and H2O near the surface after the activity test, which are regarded as the reaction sites with EF. This finding suggests that a pre-treatment with steam increases the surface OH groups and Ni(OH)2 on the Ni catalyst, and enhances surface proton conduction, thereby improving the activity.

19.
RSC Adv ; 12(44): 28359-28363, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36320534

RESUMO

Dry reforming of methane (DRM) is a promising reaction able to convert greenhouse gases (CO2 and CH4) into syngas: an important chemical feedstock. Several difficulties limit the applicability of DRM in conventional thermal catalytic reactions; it is an endothermic reaction that requires high temperatures, resulting in high carbon deposition and a low H2/CO ratio. Catalysis with the application of an electric field (EF) at low temperatures can resolve these difficulties. Synergistic effects with alloys have also been reported for reactions promoted by the application of EF. Therefore, the synergistic effects of low-temperature DRM and Ni-Fe bimetallic catalysts were investigated using various methods and several characterisations (XRD, XPS, FE-STEM, etc.), which revealed that Ni-Fe binary catalysts show high performance in low-temperature DRM. In particular, the Ni0.8Fe0.2 catalyst supported on CeO2 was found to carry out DRM in EF effectively and selectively by virtue of its bimetallic characteristics.

20.
RSC Adv ; 12(38): 24465-24470, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36128363

RESUMO

Catalytic ethane dehydrogenation (EDH) was investigated to improve the efficient production of ethylene, an extremely important chemical feedstock. The perovskite oxide YCrO3 was found to be more suitable than earlier reported catalysts because it exhibits greater activity and C2H4 selectivity (94.3%) in the presence of steam at 973 K. This catalyst shows the highest activity than ever under kinetic conditions, and shows very high ethane conversion under integral reaction conditions. Comparison with EDH performance under conditions without steam revealed that steam plays an important role in stabilizing the high activity. Raman spectra of spent catalysts indicated that steam prevents coke formation, which is responsible for deactivating YCrO3. Transmission IR and XPS measurements also revealed a mechanism by which H2O forms surface oxygen species on YCrO3, consequently removing C2H6-derived coke precursors rapidly and inhibiting coke accumulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA