Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Clin Chem ; 56(3): 399-408, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20056738

RESUMO

BACKGROUND: Fragile X syndrome (FXS) is a trinucleotide-repeat disease caused by the expansion of CGG sequences in the 5' untranslated region of the FMR1 (fragile X mental retardation 1) gene. Molecular diagnoses of FXS and other emerging FMR1 disorders typically rely on 2 tests, PCR and Southern blotting; however, performance or throughput limitations of these methods currently constrain routine testing. METHODS: We evaluated a novel FMR1 gene-specific PCR technology with DNA templates from 20 cell lines and 146 blinded clinical samples. The CGG repeat number was determined by fragment sizing of PCR amplicons with capillary electrophoresis, and results were compared with those for FMR1 Southern blotting analyses with the same samples. RESULTS: The FMR1 PCR accurately detected full-mutation alleles up to at least 1300 CGG repeats and consisting of >99% GC character. All categories of alleles detected by Southern blotting, including 66 samples with full mutations, were also identified by the FMR1 PCR for each of the 146 clinical samples. Because all full mutation alleles in samples from heterozygous females were detected by the PCR, allele zygosity was reconciled in every case. The PCR reagents also detected a 1% mass fraction of a 940-CGG allele in a background of 99% 23-CGG allele-a roughly 5- fold greater sensitivity than obtained with Southern blotting. CONCLUSIONS: The novel PCR technology can accurately categorize the spectrum of FMR1 alleles, including alleles previously considered too large to amplify; reproducibly detect low abundance full mutation alleles; and correctly infer homozygosity in female samples, thus greatly reducing the need for sample reflexing to Southern blotting.


Assuntos
Alelos , Síndrome do Cromossomo X Frágil/genética , Mutação , Reação em Cadeia da Polimerase/métodos , Feminino , Síndrome do Cromossomo X Frágil/diagnóstico , Homozigoto , Humanos , Sensibilidade e Especificidade
2.
BMC Bioinformatics ; 8: 359, 2007 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-17892592

RESUMO

BACKGROUND: High density oligonucleotide tiling arrays are an effective and powerful platform for conducting unbiased genome-wide studies. The ab initio probe selection method employed in tiling arrays is unbiased, and thus ensures consistent sampling across coding and non-coding regions of the genome. These arrays are being increasingly used to study the associated processes of transcription, transcription factor binding, chromatin structure and their association. Studies of differential expression and/or regulation provide critical insight into the mechanics of transcription and regulation that occurs during the developmental program of a cell. The time-course experiment, which comprises an in-vivo system and the proposed analyses, is used to determine if annotated and un-annotated portions of genome manifest coordinated differential response to the induced developmental program. RESULTS: We have proposed a novel approach, based on a piece-wise function - to analyze genome-wide differential response. This enables segmentation of the response based on protein-coding and non-coding regions; for genes the methodology also partitions differential response with a 5' versus 3' versus intra-genic bias. CONCLUSION: The algorithm built upon the framework of Significance Analysis of Microarrays, uses a generalized logic to define regions/patterns of coordinated differential change. By not adhering to the gene-centric paradigm, discordant differential expression patterns between exons and introns have been identified at a FDR of less than 12 percent. A co-localization of differential binding between RNA Polymerase II and tetra-acetylated histone has been quantified at a p-value < 0.003; it is most significant at the 5' end of genes, at a p-value < 10-13. The prototype R code has been made available as supplementary material [see Additional file 1].


Assuntos
Biologia Computacional/métodos , Genômica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Algoritmos , Mapeamento Cromossômico/métodos , Sondas de DNA/química , Teoria da Decisão , Componentes do Gene/genética , Perfilação da Expressão Gênica/métodos , Células HL-60/efeitos dos fármacos , Células HL-60/fisiologia , Humanos , Modelos Genéticos , Valor Preditivo dos Testes , Sequências Reguladoras de Ácido Nucleico/genética , Transcrição Gênica/fisiologia , Tretinoína/administração & dosagem
3.
BMC Bioinformatics ; 7: 434, 2006 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-17022824

RESUMO

BACKGROUND: High density oligonucleotide tiling arrays are an effective and powerful platform for conducting unbiased genome-wide studies. The ab initio probe selection method employed in tiling arrays is unbiased, and thus ensures consistent sampling across coding and non-coding regions of the genome. Tiling arrays are increasingly used in chromatin immunoprecipitation (IP) experiments (ChIP on chip). ChIP on chip facilitates the generation of genome-wide maps of in-vivo interactions between DNA-associated proteins including transcription factors and DNA. Analysis of the hybridization of an immunoprecipitated sample to a tiling array facilitates the identification of ChIP-enriched segments of the genome. These enriched segments are putative targets of antibody assayable regulatory elements. The enrichment response is not ubiquitous across the genome. Typically 5 to 10% of tiled probes manifest some significant enrichment. Depending upon the factor being studied, this response can drop to less than 1%. The detection and assessment of significance for interactions that emanate from non-canonical and/or un-annotated regions of the genome is especially challenging. This is the motivation behind the proposed algorithm. RESULTS: We have proposed a novel rank and replicate statistics-based methodology for identifying and ascribing statistical confidence to regions of ChIP-enrichment. The algorithm is optimized for identification of sites that manifest low levels of enrichment but are true positives, as validated by alternative biochemical experiments. Although the method is described here in the context of ChIP on chip experiments, it can be generalized to any treatment-control experimental design. The results of the algorithm show a high degree of concordance with independent biochemical validation methods. The sensitivity and specificity of the algorithm have been characterized via quantitative PCR and independent computational approaches. CONCLUSION: The algorithm ranks all enrichment sites based on their intra-replicate ranks and inter-replicate rank consistency. Following the ranking, the method allows segmentation of sites based on a meta p-value, a composite array signal enrichment criterion, or a composite of these two measures. The sensitivities obtained subsequent to the segmentation of data using a meta p-value of 10-5, an array signal enrichment of 0.2 and a composite of these two values are 88%, 87% and 95%, respectively.


Assuntos
Algoritmos , Imunoprecipitação da Cromatina/métodos , Análise em Microsséries/métodos , Imunoprecipitação da Cromatina/estatística & dados numéricos , Análise em Microsséries/estatística & dados numéricos , Valor Preditivo dos Testes , Estatísticas não Paramétricas
4.
J Mol Diagn ; 12(5): 589-600, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20616364

RESUMO

(CGG)(n) repeat expansion in the FMR1 gene is associated with fragile X syndrome and other disorders. Current methods for FMR1 molecular testing rely on Southern blot analysis to detect expanded alleles too large to be PCR-amplified and to identify female homozygous alleles that often confound interpretations of PCR data. A novel, single-tube CGG repeat primed FMR1 PCR technology was designed with two gene-specific primers that flank the triplet repeat region, as well as a third primer that is complementary to the (CGG)(n) repeat. This PCR was evaluated with 171 unique DNA samples, including a blinded set of 146 clinical specimens. The method detected all alleles reported by Southern blot analysis, including full mutations in 66 clinical samples and comprised up to 1300 CGG. Furthermore, a blinded cohort of 42 female homozygous and heterozygous specimens, including 21 with full mutation alleles, was resolved with 100% accuracy. Last, AGG interrupter sequences, which may influence the risk of (CGG)(n) expansion in the children of some carriers, were each correctly identified in 14 male and female clinical samples as referenced to DNA sequencing. As a result, this PCR provides robust detection of expanded alleles and resolves allele zygosity, thus minimizing the number of samples that require Southern blot analysis and producing more comprehensive FMR1 genotyping data than other methods.


Assuntos
Alelos , Síndrome do Cromossomo X Frágil/genética , Reação em Cadeia da Polimerase/métodos , Repetições de Trinucleotídeos , Regiões 5' não Traduzidas , Southern Blotting , Primers do DNA , Eletroforese em Gel de Ágar , Eletroforese Capilar , Humanos
5.
Mol Cell ; 18(6): 735-48, 2005 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-15949447

RESUMO

In yeast cells, preferential accessibility of the HIS3-PET56 promoter region is determined by a general property of the DNA sequence, not by defined sequence elements. In vivo, this region is largely devoid of nucleosomes, and accessibility is directly related to reduced histone density. The HIS3-PET56 and DED1 promoter regions associate poorly with histones in vitro, indicating that intrinsic nucleosome stability is a major determinant of preferential accessibility. Specific and genome-wide analyses indicate that low nucleosome density is a very common feature of yeast promoter regions that correlates poorly with transcriptional activation. Thus, the yeast genome is organized into structurally distinct promoter and nonpromoter regions whose DNA sequences inherently differ with respect to nucleosome formation. This organization ensures that transcription factors bind preferentially to appropriate sites in promoters, rather than to the excess of irrelevant sites in nonpromoter regions.


Assuntos
DNA Fúngico/metabolismo , Histonas/metabolismo , Nucleossomos/ultraestrutura , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Sequência de Bases , Primers do DNA , Histonas/genética , Íntrons , Metiltransferases/metabolismo , Nucleossomos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Curr Protoc Mol Biol ; Chapter 21: Unit 21.3, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18265358

RESUMO

Chromatin immunoprecipitation (ChIP) is a powerful and widely applied technique for detecting the association of individual proteins with specific genomic regions in vivo. Live cells are treated with formaldehyde to generate protein-protein and protein-DNA cross-links between molecules that are in close proximity on the chromatin template in vivo. DNA sequences that cross-link with a given protein are selectively enriched, and reversal of the formaldehyde cross-linking permits recovery and quantitative analysis of the immunoprecipitated DNA. As formaldehyde inactivates cellular enzymes essentially immediately upon addition to cells, ChIP provides snapshots of protein-protein and protein-DNA interactions at a particular time point, and hence is useful for kinetic analysis of events occurring on chromosomal sequences in vivo. In addition, ChIP can be combined with microarray technology to identify the location of specific proteins on a genome-wide basis. in this unit describes the ChIP procedure for Saccharomyces cerevisiae; describes the corresponding steps for mammalian cells.


Assuntos
Imunoprecipitação da Cromatina/métodos , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/metabolismo , Genoma , Animais , Sequência de Bases , Células/química , Células/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Humanos , Reação em Cadeia da Polimerase , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Cell ; 116(4): 499-509, 2004 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-14980218

RESUMO

Using high-density oligonucleotide arrays representing essentially all nonrepetitive sequences on human chromosomes 21 and 22, we map the binding sites in vivo for three DNA binding transcription factors, Sp1, cMyc, and p53, in an unbiased manner. This mapping reveals an unexpectedly large number of transcription factor binding site (TFBS) regions, with a minimal estimate of 12,000 for Sp1, 25,000 for cMyc, and 1600 for p53 when extrapolated to the full genome. Only 22% of these TFBS regions are located at the 5' termini of protein-coding genes while 36% lie within or immediately 3' to well-characterized genes and are significantly correlated with noncoding RNAs. A significant number of these noncoding RNAs are regulated in response to retinoic acid, and overlapping pairs of protein-coding and noncoding RNAs are often coregulated. Thus, the human genome contains roughly comparable numbers of protein-coding and noncoding genes that are bound by common transcription factors and regulated by common environmental signals.


Assuntos
Cromossomos Humanos Par 21 , Cromossomos Humanos Par 22 , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Linhagem Celular , Cromatina/metabolismo , Mapeamento Cromossômico , Ilhas de CpG , Éxons , Etiquetas de Sequências Expressas , Genoma Humano , Humanos , Células Jurkat , Modelos Genéticos , Reação em Cadeia da Polimerase , Testes de Precipitina , Regiões Promotoras Genéticas , Ligação Proteica , RNA/química , RNA/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tretinoína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA