Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 415: 125548, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33721779

RESUMO

Flexible micro-cellular open porous 3D polymer foam silica aerogel composites with exceptional oil sorption characteristics were prepared by implanting silica aerogel in the interstices of foam substrates. Silica aerogels were engineered from silane precursors namely tetraethoxysilane (TEOS) and methyltrimethoxysilane (MTMS) adopting economical, energy efficient and scalable ambient pressure drying technique. These flexible composites exhibited outstanding structural ruggedness. The foam-aerogel composites deliver superior hydrophobic characteristics in terms of contact angle data. The aerogel composites recorded an oil uptake of 31.3 g per g of the composite for engine oil and the uptake was very swift. Mechanical squeezing enables near complete oil removal from the composites. The foam aerogel composites displayed superior recyclability features, as first time absorption is retained even after 10 cycles of repeated squeezing and re-absorption operations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA