Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38203423

RESUMO

An increased concentration of palmitate in circulation is one of the most harmful factors in obesity. The von Willebrand factor (vWF), a protein involved in haemostasis, is produced and secreted by the vascular endothelium. An increased level of vWF in obese patients is associated with thrombosis and cardiovascular disease. The aim of this study was to investigate a palmitate effect on vWF in endothelial cells and understand the mechanisms of palmitate-activated signalling. Human umbilical vein endothelial cells (HUVECs) incubated in the presence of palmitate, exhibited an increased VWF gene expression, vWF protein maturation, and stimulated vWF secretion. Cardamonin, a Nuclear Factor kappa B (NF-κB) inhibitor, abolished the palmitate effect on VWF expression. The inhibition of Toll-like receptor (TLR) 2 with C29 resulted in the TLR4 overactivation in palmitate-treated cells. Palmitate, in the presence of TLR4 inhibitor TAK-242, leads to a higher expression of TLR6, CD36, and TIRAP. The silencing of TLR4 resulted in an increase in TLR2 level and vice versa. The obtained results indicate a potential mechanism of obesity-induced thrombotic complication caused by fatty acid activation of NF-κB signalling and vWF upregulation and help to identify various compensatory mechanisms related to TLR4 signal transduction.


Assuntos
NF-kappa B , Fator de von Willebrand , Humanos , Fator de von Willebrand/genética , Células Endoteliais da Veia Umbilical Humana , Receptor 4 Toll-Like/genética , Receptores Toll-Like , Proteínas I-kappa B , Obesidade
2.
Proc Natl Acad Sci U S A ; 114(16): E3233-E3242, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28373563

RESUMO

The mammalian gene Nit1 (nitrilase-like protein 1) encodes a protein that is highly conserved in eukaryotes and is thought to act as a tumor suppressor. Despite being ∼35% sequence identical to ω-amidase (Nit2), the Nit1 protein does not hydrolyze efficiently α-ketoglutaramate (a known physiological substrate of Nit2), and its actual enzymatic function has so far remained a puzzle. In the present study, we demonstrate that both the mammalian Nit1 and its yeast ortholog are amidases highly active toward deaminated glutathione (dGSH; i.e., a form of glutathione in which the free amino group has been replaced by a carbonyl group). We further show that Nit1-KO mutants of both human and yeast cells accumulate dGSH and the same compound is excreted in large amounts in the urine of Nit1-KO mice. Finally, we show that several mammalian aminotransferases (transaminases), both cytosolic and mitochondrial, can form dGSH via a common (if slow) side-reaction and provide indirect evidence that transaminases are mainly responsible for dGSH formation in cultured mammalian cells. Altogether, these findings delineate a typical instance of metabolite repair, whereby the promiscuous activity of some abundant enzymes of primary metabolism leads to the formation of a useless and potentially harmful compound, which needs a suitable "repair enzyme" to be destroyed or reconverted into a useful metabolite. The need for a dGSH repair reaction does not appear to be limited to eukaryotes: We demonstrate that Nit1 homologs acting as excellent dGSH amidases also occur in Escherichia coli and other glutathione-producing bacteria.


Assuntos
Aminoidrolases/metabolismo , Glutationa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transaminases/metabolismo , Aminoidrolases/fisiologia , Animais , Desaminação , Humanos , Hidrólise , Camundongos , Camundongos Knockout , Especificidade por Substrato
3.
Elife ; 72018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30526847

RESUMO

Protein histidine methylation is a rare post-translational modification of unknown biochemical importance. In vertebrates, only a few methylhistidine-containing proteins have been reported, including ß-actin as an essential example. The evolutionary conserved methylation of ß-actin H73 is catalyzed by an as yet unknown histidine N-methyltransferase. We report here that the protein SETD3 is the actin-specific histidine N-methyltransferase. In vitro, recombinant rat and human SETD3 methylated ß-actin at H73. Knocking-out SETD3 in both human HAP1 cells and in Drosophila melanogaster resulted in the absence of methylation at ß-actin H73 in vivo, whereas ß-actin from wildtype cells or flies was > 90% methylated. As a consequence, we show that Setd3-deficient HAP1 cells have less cellular F-actin and an increased glycolytic phenotype. In conclusion, by identifying SETD3 as the actin-specific histidine N-methyltransferase, our work pioneers new research into the possible role of this modification in health and disease and questions the substrate specificity of SET-domain-containing enzymes.


Assuntos
Actinas/metabolismo , Fibroblastos/enzimologia , Histona-Lisina N-Metiltransferase/genética , Músculo Esquelético/enzimologia , Processamento de Proteína Pós-Traducional , Actinas/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Sequência Conservada , Drosophila melanogaster/classificação , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Fibroblastos/citologia , Glicólise/genética , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/farmacologia , Humanos , Cinética , Metilação , Modelos Moleculares , Músculo Esquelético/química , Fenótipo , Filogenia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA