Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34885059

RESUMO

Ovarian cancer remains one of the most fatal cancers due to a lack of robust screening methods of detection at early stages. Extracellular matrix (ECM) mediates interactions between cancer cells and their microenvironment via specific molecules. Lumican, a small leucine-rich proteoglycan (SLRP), maintains ECM integrity and inhibits both melanoma primary tumor development, as well as metastatic spread. The aim of this study was to analyze the effect of lumican on tumor growth of murine ovarian epithelial cancer. C57BL/6 wild type mice (n = 12) and lumican-deficient mice (n = 10) were subcutaneously injected with murine ovarian epithelial carcinoma ID8 cells, and then sacrificed after 18 days. Analysis of tumor volumes demonstrated an inhibitory effect of endogenous lumican on ovarian tumor growth. The ovarian primary tumors were subjected to histological and immunohistochemical staining using anti-lumican, anti-αv integrin, anti-CD31 and anti-cyclin D1 antibodies, and then further examined by label-free infrared spectral imaging (IRSI), second harmonic generation (SHG) and Picrosirius red staining. The IR tissue images allowed for the identification of different ECM tissue regions of the skin and the ovarian tumor. Moreover, IRSI showed a good correlation with αv integrin immunostaining and collagen organization within the tumor. Our results demonstrate that lumican inhibits ovarian cancer growth mainly by altering collagen fibrilogenesis.

2.
Cell Adh Migr ; 15(1): 215-223, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34308743

RESUMO

We previously demonstrated that F4 peptide (CNPEDCLYPVSHAHQR) from collagen XIX was able to inhibit melanoma cell migrationin vitro and cancer progression in a mouse melanoma model. The aim of the present work was to study the anti-angiogenic properties of F4 peptide. We demonstrated that F4 peptide inhibited VEGF-induced pseudo-tube formation on Matrigel by endothelial cells and endothelial sprouting in a rat aortic ring assay. By affinity chromatography, we identified αvß3 and α5ß1 integrins as potential receptors for F4 peptide on endothelial cell surface. Using solid phase assays, we proved the direct interaction between F4 and both integrins. Taken together, our results demonstrate that F4 peptide is a potent antitumor agent inhibiting both angiogenesis and tumor cell migration.


Assuntos
Inibidores da Angiogênese/farmacologia , Colágeno/metabolismo , Integrina alfa5beta1/metabolismo , Integrina alfaVbeta3/metabolismo , Neovascularização Patológica/tratamento farmacológico , Fragmentos de Peptídeos/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno/farmacologia , Células Endoteliais/metabolismo , Humanos , Integrina alfa5beta1/efeitos dos fármacos , Integrina alfaVbeta3/efeitos dos fármacos , Neovascularização Patológica/patologia , Fragmentos de Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley
3.
Front Cell Dev Biol ; 8: 775, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850867

RESUMO

Angiogenesis is defined as the formation of new capillaries by sprouting from the pre-existing microvasculature. It occurs in physiological and pathological processes particularly in tumor growth and metastasis. α1, α2, α3, and α6 NC1 domains from type IV collagen were reported to inhibit tumor angiogenesis. We previously demonstrated that the α4 NC1 domain from type IV collagen, named Tetrastatin, inhibited tumor growth in a mouse melanoma model. The inhibitory activity was located in a 13 amino acid sequence named QS-13. In the present paper, we demonstrate that QS-13 decreases VEGF-induced-angiogenesis in vivo using the Matrigel plug model. Fluorescence molecular tomography allows the measurement of a 65% decrease in Matrigel plug angiogenesis following QS-13 administration. The results are confirmed by CD31 microvessel density analysis on Matrigel plug slices. QS-13 peptide decreases Human Umbilical Vein Endothelial Cells (HUVEC) migration and pseudotube formation in vitro. Relevant QS-13 conformations were obtained from molecular dynamics simulations and docking. A putative interaction of QS-13 with α5ß1 integrin was investigated. The interaction was confirmed by affinity chromatography, solid phase assay, and surface plasmon resonance. QS-13 binding site on α5ß1 integrin is located in close vicinity to the RGD binding site, as demonstrated by competition assays. Collectively, our results suggest that QS-13 exhibits a mighty anti-angiogenic activity that could be used in cancer treatment and other pathologies with excessive angiogenesis such as hemangioma, psoriasis or diabetes.

4.
Sci Rep ; 8(1): 9837, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29959360

RESUMO

Tetrastatin, a 230 amino acid sequence from collagen IV, was previously demonstrated to inhibit melanoma progression. In the present paper, we identified the minimal active sequence (QKISRCQVCVKYS: QS-13) that reproduced the anti-tumor effects of whole Tetrastatin in vivo and in vitro on melanoma cell proliferation, migration and invasion. We demonstrated that QS-13 binds to SK-MEL-28 melanoma cells through the αvß3 integrin using blocking antibody and ß3 integrin subunit siRNAs strategies. Relevant QS-13 conformations were extracted from molecular dynamics simulations and their interactions with αVß3 integrin were analyzed by docking experiments to determine the binding areas and the QS-13 amino acids crucial for the binding. The in silico results were confirmed by in vitro experiments. Indeed, QS-13 binding to SK-MEL-28 was dependent on the presence of a disulfide-bound as shown by mass spectroscopy and the binding site on αVß3 was located in close vicinity to the RGD binding site. QS-13 binding inhibits the FAK/PI3K/Akt pathway, a transduction pathway that is largely involved in tumor cell proliferation and migration. Taken together, our results demonstrate that the QS-13 peptide binds αvß3 integrin in a conformation-dependent manner and is a potent antitumor agent that could target cancer cells through αVß3.


Assuntos
Colágeno Tipo IV/metabolismo , Quinase 1 de Adesão Focal/antagonistas & inibidores , Integrina alfaVbeta3/metabolismo , Melanoma/tratamento farmacológico , Fragmentos de Peptídeos/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Apoptose , Adesão Celular , Movimento Celular , Proliferação de Células , Colágeno Tipo IV/química , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Humanos , Integrina alfaVbeta3/química , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/química , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Conformação Proteica , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas
5.
Oncotarget ; 7(2): 1516-28, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26621838

RESUMO

Type XIX collagen is a minor collagen associated with basement membranes. It was isolated for the first time in a human cDNA library from rhabdomyosarcoma and belongs to the FACITs family (Fibril Associated Collagens with Interrupted Triple Helices). Previously, we demonstrated that the NC1 domain of collagen XIX (NC1(XIX)) exerts anti-tumor properties on melanoma cells by inhibiting their migration and invasion. In the present work, we identified for the first time the integrin αvß3 as a receptor of NC1(XIX). Moreover, we demonstrated that NC1(XIX) inhibits the FAK/PI3K/Akt/mTOR pathway, by decreasing the phosphorylation and activity of the major proteins involved in this pathway. On the other hand, NC1(XIX) induced an increase of GSK3ß activity by decreasing its degree of phosphorylation. Treatments targeting this central signaling pathway in the development of melanoma are promising and new molecules should be developed. NC1(XIX) seems to have the potential for the design of new anti-cancer drugs.


Assuntos
Colágeno/metabolismo , Colágenos Associados a Fibrilas/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Integrina alfaVbeta3/metabolismo , Melanoma/enzimologia , Fragmentos de Peptídeos/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/enzimologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Colágeno/farmacologia , Colágenos Associados a Fibrilas/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Integrina alfaVbeta3/efeitos dos fármacos , Melanoma/tratamento farmacológico , Melanoma/patologia , Terapia de Alvo Molecular , Fragmentos de Peptídeos/farmacologia , Fosforilação , Domínios Proteicos , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia
6.
Oncotarget ; 6(6): 3656-68, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25668817

RESUMO

During tumor invasion, tumor cells degrade the extracellular matrix. Basement membrane degradation is responsible for the production of peptides with anti-tumor properties. Type XIX collagen is associated with basement membranes in vascular, neuronal, mesenchymal and epithelial tissues. Previously, we demonstrated that the non-collagenous NC1, C-terminal, domain of collagen XIX [NC1(XIX)] inhibits the migration capacities of tumor cells and exerts a strong inhibition of tumor growth. Here, we demonstrate that plasmin, one of the most important enzyme involved in tumor invasion, was able to release a fragment of NC1(XIX), which retained the anti-tumor activity. Molecular modeling studies showed that NC1(XIX) and the anti-tumor fragment released by plasmin (F4) adopted locally the same type I ß-turn conformation. This suggests that the anti-tumor effect is conformation-dependent. This study demonstrates that collagen XIX is a novel proteolytic substrate for plasmin. Such release may constitute a defense of the organism against tumor invasion.


Assuntos
Colágeno/metabolismo , Fibrinolisina/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Peptídeos/metabolismo , Sequência de Aminoácidos , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão/métodos , Colágeno/química , Humanos , Melanoma/química , Melanoma/metabolismo , Melanoma/patologia , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Invasividade Neoplásica , Neoplasias/química , Peptídeos/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteólise , Transfecção
7.
Infect Immun ; 75(5): 2511-22, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17307938

RESUMO

NKT cells are a population of innate-like lymphocytes that display effector functions and immunoregulatory properties. We characterized the NKT cell response induced in C57BL/6 mice during a primary infection with Plasmodium yoelii sporozoites. We observed a heterogeneous NKT cell response that differed between liver and spleen. Hepatic NKT cells found in infected livers consisted mainly of CD1d-dependent CD4+ and double-negative (DN) NKT cells, whereas CD1d-independent NKT cells exhibiting a TCR(high) CD4(high) phenotype were prominent among splenic NKT cells during the infection. Hepatic and splenic NKT cells isolated from infected mice were activated and secreted mainly gamma interferon and tumor necrosis factor alpha in response to stimulation. Finally, P. yoelii-activated hepatic DN NKT cells inhibited the parasite's liver stage in a CD1d-dependent manner in vitro. However, experiments using B6.CD1d-deficient mice showed that CD1d and CD1d-restricted NKT cells are not necessary to control the parasite's development in vivo during neither the preerythrocytic stage nor the erythrocytic stage. Thus, our results show that a primary P. yoelii infection induces a heterogeneous and organ-specific response of NKT cells and that CD1d-dependent NKT cells play a minor role in the control of the development of Plasmodium in vivo in our model.


Assuntos
Células Matadoras Naturais/imunologia , Malária/imunologia , Plasmodium yoelii/patogenicidade , Animais , Antígenos CD1/genética , Antígenos CD4/metabolismo , Feminino , Fígado/imunologia , Fígado/parasitologia , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos , Plasmodium yoelii/crescimento & desenvolvimento , Baço/imunologia , Baço/parasitologia , Esporozoítos
8.
J Immunol ; 177(2): 1229-39, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16818782

RESUMO

Various components of innate and adaptive immunity contribute to host defenses against Plasmodium infection. We investigated the contribution of NK cells to the immune response to primary infection with Plasmodium yoelii sporozoites in C57BL/6 mice. We found that hepatic and splenic NK cells were activated during infection and displayed different phenotypic and functional properties. The number of hepatic NK cells increased whereas the number of splenic NK cells decreased. Expression of the Ly49 repertoire was modified in the spleen but not in the liver. Splenic and hepatic NK cells have a different inflammatory cytokines profile production. In addition, liver NK cells were cytotoxic to YAC-1 cells and P. yoelii liver stages in vitro but not to erythrocytic stages. No such activity was observed with splenic NK cells from infected mice. These in vitro results were confirmed by the in vivo observation that Rag2(-/-) mice were more resistant to sporozoite infection than Rag2(-/-) gamma c(-/-) mice, whereas survival rates were similar for the two strains following blood-stage infection. Thus, NK cells are involved in early immune mechanisms controlling Plasmodium infection, mostly at the pre-erythrocytic stage.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/parasitologia , Hepatopatias Parasitárias/imunologia , Hepatopatias Parasitárias/parasitologia , Plasmodium yoelii/crescimento & desenvolvimento , Plasmodium yoelii/imunologia , Animais , Separação Celular , Células Cultivadas , Citocinas/biossíntese , Testes Imunológicos de Citotoxicidade , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Feminino , Imunofenotipagem , Subunidade gama Comum de Receptores de Interleucina , Células Matadoras Naturais/metabolismo , Hepatopatias Parasitárias/genética , Hepatopatias Parasitárias/mortalidade , Malária/genética , Malária/imunologia , Malária/mortalidade , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina/deficiência , Receptores de Interleucina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA