Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Biol Evol ; 31(8): 2108-23, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24817545

RESUMO

It has long been believed that the male-specific region of the human Y chromosome (MSY) is genetically independent from the X chromosome. This idea has been recently dismissed due to the discovery that X-Y gametologous gene conversion may occur. However, the pervasiveness of this molecular process in the evolution of sex chromosomes has yet to be exhaustively analyzed. In this study, we explored how pervasive X-Y gene conversion has been during the evolution of the youngest stratum of the human sex chromosomes. By comparing about 0.5 Mb of human-chimpanzee gametologous sequences, we identified 19 regions in which extensive gene conversion has occurred. From our analysis, two major features of these emerged: 1) Several of them are evolutionarily conserved between the two species and 2) almost all of the 19 hotspots overlap with regions where X-Y crossing-over has been previously reported to be involved in sex reversal. Furthermore, in order to explore the dynamics of X-Y gametologous conversion in recent human evolution, we resequenced these 19 hotspots in 68 widely divergent Y haplogroups and used publicly available single nucleotide polymorphism data for the X chromosome. We found that at least ten hotspots are still active in humans. Hence, the results of the interspecific analysis are consistent with the hypothesis of widespread reticulate evolution within gametologous sequences in the differentiation of hominini sex chromosomes. In turn, intraspecific analysis demonstrates that X-Y gene conversion may modulate human sex-chromosome-sequence evolution to a greater extent than previously thought.


Assuntos
Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Conversão Gênica , Pan troglodytes/genética , Animais , Evolução Molecular , Feminino , Haplótipos , Humanos , Masculino , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Cromossomo X/genética , Cromossomo Y/genética
2.
Am J Hum Genet ; 88(6): 814-818, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21601174

RESUMO

To shed light on the structure of the basal backbone of the human Y chromosome phylogeny, we sequenced about 200 kb of the male-specific region of the human Y chromosome (MSY) from each of seven Y chromosomes belonging to clades A1, A2, A3, and BT. We detected 146 biallelic variant sites through this analysis. We used these variants to construct a patrilineal tree, without taking into account any previously reported information regarding the phylogenetic relationships among the seven Y chromosomes here analyzed. There are several key changes at the basal nodes as compared with the most recent reference Y chromosome tree. A different position of the root was determined, with important implications for the origin of human Y chromosome diversity. An estimate of 142 KY was obtained for the coalescence time of the revised MSY tree, which is earlier than that obtained in previous studies and easier to reconcile with plausible scenarios of modern human origin. The number of deep branchings leading to African-specific clades has doubled, further strengthening the MSY-based evidence for a modern human origin in the African continent. An analysis of 2204 African DNA samples showed that the deepest clades of the revised MSY phylogeny are currently found in central and northwest Africa, opening new perspectives on early human presence in the continent.


Assuntos
Cromossomos Humanos Y/classificação , Cromossomos Humanos Y/genética , Filogenia , África , Alelos , Variação Genética , Humanos , Masculino , Análise de Sequência de DNA
3.
Mol Biol Evol ; 27(3): 714-25, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19812029

RESUMO

Different X-homologous regions of the male-specific portion of the human Y chromosome (MSY) are characterized by a different content of putative single nucleotide polymorphisms (SNPs), as reported in public databases. The possible role of X-to-Y nonallelic gene conversion in contributing to these differences remains poorly understood. We explored this issue by analyzing sequence variation in three regions of the MSY characterized by a different degree of X-Y similarity and a different density of putative SNPs: the PCDH11Y gene in the X-transposed (X-Y identity 99%, high putative SNP content); the TBL1Y gene in the X-degenerate (X-Y identity 86-88%, low putative SNP content); and VCY genes-containing region in the P8 palindrome (X-Y identity 95%, low putative SNP content). Present findings do not provide any evidence for gene conversion in the PCDH11Y and TBL1Y genes; they also strongly suggest that most putative SNPs of the PCDH11Y gene (and possibly the entire X-transposed region) are most likely X-Y paralogous sequence variants, which have been entered in the databases as SNPs. On the other hand, clear evidence for the VCY genes in the P8 palindrome having acted as an acceptor of X-to-Y gene conversion was obtained. A rate of 1.8 x 10(-7) X-to-Y conversions/bp/year was estimated for these genes. These findings indicate that in the VCY region of the MSY, X-to-Y gene conversion can be highly effective to increase the level of diversity among human Y chromosomes and suggest an additional explanation for the ability of the Y chromosome to retard degradation during evolution. Present data are expected to pave the way for future investigations on the role of nonallelic gene conversion in double-strand break repair and the maintenance of Y chromosome integrity.


Assuntos
Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Análise Mutacional de DNA/métodos , Evolução Molecular , Conversão Gênica , Caderinas/genética , Cromossomos Humanos X/química , Cromossomos Humanos Y/química , Humanos , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único , Protocaderinas , Homologia de Sequência do Ácido Nucleico , Transducina/genética
4.
Genome Biol Evol ; 12(9): 1579-1590, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32835369

RESUMO

The Dominican Republic is one of the two countries on the Hispaniola island, which is part of the Antilles. Hispaniola was affected by the European colonization and massive deportation of African slaves since the XVI century and these events heavily shaped the genetic composition of the present-day population. To shed light about the effect of the European rules, we analyzed 92 single nucleotide polymorphisms on the Y chromosome in 182 Dominican individuals from three different locations. The Dominican Y haplogroup composition was characterized by an excess of northern African/European lineages (59%), followed by the African clades (38%), whereas the Native-American lineages were rare (3%). The comparison with the mitochondrial DNA variability, dominated by African clades, revealed a sex-biased admixture pattern, in line with the colonial society dominated by European men. When other Caribbean and non-Caribbean former colonies were also considered, we noted a difference between territories under a Spanish rule (like the Dominican Republic) and British/French rule, with the former characterized by an excess of European Y lineages reflecting the more permissive Iberian legislation about mixed people and slavery. Finally, we analyzed the distribution in Africa of the Dominican lineages with a putative African origin, mainly focusing on central and western Africa, which were the main sources of African slaves. We found that most (83%) of the African lineages observed in Santo Domingo have a central African ancestry, suggesting that most of the slaves were deported from regions.


Assuntos
Cromossomos Humanos Y , Migração Humana , Grupos Raciais/genética , República Dominicana , Variação Genética , Haplótipos , Humanos , Masculino
5.
Forensic Sci Int Genet ; 38: 185-194, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30419518

RESUMO

The male-specific northern African genetic pool is characterised by a high frequency of the E-M81 haplogroup, which expanded in very recent times (2-3 kiloyears ago). As a consequence of their recent coalescence, E-M81 chromosomes often cannot be completely distinguished on the basis of their Y-STR profiles, unless rapidly-mutating Y-STRs (RM Y-STRs) are analysed. In this study, we used the Yfiler® Plus kit, which includes 7 RM Y-STRs and 20 standard Y-STR, to analyse 477 unrelated males coming from 11 northern African populations sampled from Morocco, Algeria, Libya and Egypt. The Y chromosomes were assigned to monophyletic lineages after the analysis of 72 stable biallelic polymorphisms and, as expected, we found a high proportion of E-M81 subjects (about 46%), with frequencies decreasing from west to east. We found low intra-population diversity indexes, in particular in the populations that experienced long-term isolation. The AMOVA analysis showed significant differences between the countries and between most of the 11 populations, with a rough differentiation between northwestern Africa and northeastern Africa, where the Egyptians Berbers from Siwa represented an outlier population. The comparison between the Yfiler® and the Yfiler® Plus network of the E-M81 Y chromosomes confirmed the high power of discrimination of the latter kit, thanks to higher variability of the RM Y-STRs: indeed, the number of chromosomes sharing the same haplotype was drastically reduced from 201 to 81 and limited, in the latter case, to subjects from the same population.


Assuntos
Cromossomos Humanos Y , Genética Populacional , Repetições de Microssatélites , Reação em Cadeia da Polimerase/instrumentação , Polimorfismo de Nucleotídeo Único , África do Norte , População Negra/genética , Impressões Digitais de DNA , Genótipo , Haplótipos , Humanos , Masculino
6.
Genome Biol ; 19(1): 20, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29433568

RESUMO

BACKGROUND: Little is known about the peopling of the Sahara during the Holocene climatic optimum, when the desert was replaced by a fertile environment. RESULTS: In order to investigate the role of the last Green Sahara in the peopling of Africa, we deep-sequence the whole non-repetitive portion of the Y chromosome in 104 males selected as representative of haplogroups which are currently found to the north and to the south of the Sahara. We identify 5,966 mutations, from which we extract 142 informative markers then genotyped in about 8,000 subjects from 145 African, Eurasian and African American populations. We find that the coalescence age of the trans-Saharan haplogroups dates back to the last Green Sahara, while most northern African or sub-Saharan clades expanded locally in the subsequent arid phase. CONCLUSIONS: Our findings suggest that the Green Sahara promoted human movements and demographic expansions, possibly linked to the adoption of pastoralism. Comparing our results with previously reported genome-wide data, we also find evidence for a sex-biased sub-Saharan contribution to northern Africans, suggesting that historical events such as the trans-Saharan slave trade mainly contributed to the mtDNA and autosomal gene pool, whereas the northern African paternal gene pool was mainly shaped by more ancient events.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , África do Norte , Cromossomos Humanos Y , Humanos , Masculino , Filogenia , Dinâmica Populacional
7.
Forensic Sci Int Genet ; 27: 123-131, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28068531

RESUMO

By using the recently introduced 6-dye Yfiler® Plus multiplex, we analyzed 462 males belonging to 20 ethnic groups from four eastern African countries (Eritrea, Ethiopia, Djibouti and Kenya). Through a Y-STR sequence analysis, combined with 62 SNP-based haplogroup information, we were able to classify observed microvariant alleles at four Y-STR loci as either monophyletic (DYF387S1 and DYS458) or recurrent (DYS449 and DYS627). We found evidence of non-allelic gene conversion among paralogous STRs of the two-copy locus DYF387S1. Twenty-two diallelic and triallelic patterns observed at 13 different loci were found to be significantly over-represented (p<10-6) among profiles obtained from cell lines compared to those from blood and saliva. Most of the diallelic/triallelic patterns from cell lines involved recurrent mutations at rapidly mutating loci (RM Y-STRs) included in the multiplex (p<10-2). At haplotype level, intra-population diversity indices were found to be among the lowest so far reported for the Yfiler® Plus, while statistically significant differences among countries and ethnic groups were detected when considering haplotype frequencies alone (FST) or by using molecular distances among haplotypes (ΦST). The strong population subdivision observed is probably the consequence of the patrilineal social organization of most eastern African ethnic groups, and suggests caution in the use of country-based haplotype frequency distributions for forensic inferences in this region.


Assuntos
Cromossomos Humanos Y , Etnicidade/genética , Genética Populacional , Repetições de Microssatélites , África Oriental , Impressões Digitais de DNA , Genótipo , Humanos , Masculino , Reação em Cadeia da Polimerase Multiplex , Mutação , Polimorfismo de Nucleotídeo Único
8.
Sci Rep ; 6: 28710, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27346230

RESUMO

Long Terminal Repeats (LTRs) are nearly identical DNA sequences found at either end of Human Endogenous Retroviruses (HERVs). The high sequence similarity that exists among different LTRs suggests they could be substrate of ectopic gene conversion events. To understand the extent to which gene conversion occurs and to gain new insights into the evolutionary history of these elements in humans, we performed an intra-species phylogenetic study of 52 LTRs on different unrelated Y chromosomes. From this analysis, we obtained direct evidence that demonstrates the occurrence of ectopic gene conversion in several LTRs, with donor sequences located on both sex chromosomes and autosomes. We also found that some of these elements are characterized by an extremely high density of polymorphisms, showing one of the highest nucleotide diversities in the human genome, as well as a complex patchwork of sequences derived from different LTRs. Finally, we highlighted the limits of current short-read NGS studies in the analysis of genetic diversity of the LTRs in the human genome. In conclusion, our comparative re-sequencing analysis revealed that ectopic gene conversion is a common event in the evolution of LTR elements, suggesting complex genetic links among LTRs from different chromosomes.


Assuntos
Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Conversão Gênica , Genoma Humano , Filogenia , Sequências Repetidas Terminais , Feminino , Humanos , Masculino
9.
Genome Biol Evol ; 7(7): 1940-50, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26108492

RESUMO

Haplogroup E, defined by mutation M40, is the most common human Y chromosome clade within Africa. To increase the level of resolution of haplogroup E, we disclosed the phylogenetic relationships among 729 mutations found in 33 haplogroup DE Y-chromosomes sequenced at high coverage in previous studies. Additionally, we dissected the E-M35 subclade by genotyping 62 informative markers in 5,222 samples from 118 worldwide populations. The phylogeny of haplogroup E showed novel features compared with the previous topology, including a new basal dichotomy. Within haplogroup E-M35, we resolved all the previously known polytomies and assigned all the E-M35* chromosomes to five new different clades, all belonging to a newly identified subhaplogroup (E-V1515), which accounts for almost half of the E-M35 chromosomes from the Horn of Africa. Moreover, using a Bayesian phylogeographic analysis and a single nucleotide polymorphism-based approach we localized and dated the origin of this new lineage in the northern part of the Horn, about 12 ka. Time frames, phylogenetic structuring, and sociogeographic distribution of E-V1515 and its subclades are consistent with a multistep demic spread of pastoralism within north-eastern Africa and its subsequent diffusion to subequatorial areas. In addition, our results increase the discriminative power of the E-M35 haplogroup for use in forensic genetics through the identification of new ancestry-informative markers.


Assuntos
Cromossomos Humanos Y , Haplótipos , África , Cromossomos Humanos Y/classificação , Evolução Molecular , Técnicas de Genotipagem , Migração Humana , Humanos , Masculino , Mutação , Filogenia , Filogeografia , Polimorfismo de Nucleotídeo Único
10.
PLoS One ; 6(1): e16073, 2011 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-21253605

RESUMO

Haplogroup E1b1, defined by the marker P2, is the most represented human Y chromosome haplogroup in Africa. A phylogenetic tree showing the internal structure of this haplogroup was published in 2008. A high degree of internal diversity characterizes this haplogroup, as well as the presence of a set of chromosomes undefined on the basis of a derived character. Here we make an effort to update the phylogeny of this highly diverse haplogroup by including seven mutations which have been newly discovered by direct resequencing. We also try to incorporate five previously-described markers which were not, however, reported in the 2008 tree. Additionally, during the process of mapping, we found that two previously reported SNPs required a new position on the tree. There are three key changes compared to the 2008 phylogeny. Firstly, haplogroup E-M2 (former E1b1a) and haplogroup E-M329 (former E1b1c) are now united by the mutations V38 and V100, reducing the number of E1b1 basal branches to two. The new topology of the tree has important implications concerning the origin of haplogroup E1b1. Secondly, within E1b1b1 (E-M35), two haplogroups (E-V68 and E-V257) show similar phylogenetic and geographic structure, pointing to a genetic bridge between southern European and northern African Y chromosomes. Thirdly, most of the E1b1b1* (E-M35*) paragroup chromosomes are now marked by defining mutations, thus increasing the discriminative power of the haplogroup for use in human evolution and forensics.


Assuntos
Cromossomos Humanos Y/genética , Haplótipos/genética , Filogenia , Polimorfismo Genético , África , Europa (Continente) , Genética Populacional , Geografia , Humanos , Polimorfismo de Nucleotídeo Único
11.
Forensic Sci Int Genet ; 5(3): e49-52, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20732840

RESUMO

More than 2700 unrelated individuals from Europe, northern Africa and western Asia were analyzed for the marker M269, which defines the Y chromosome haplogroup R1b1b2. A total of 593 subjects belonging to this haplogroup were identified and further analyzed for two SNPs, U106 and U152, which define haplogroups R1b1b2g and R1b1b2h, respectively. These haplogroups showed quite different frequency distribution patterns within Europe, with frequency peaks in northern Europe (R1b1b2g) and northern Italy/France (R1b1b2h).


Assuntos
Cromossomos Humanos Y , Polimorfismo de Nucleotídeo Único , Haplótipos , Humanos
12.
Eur J Hum Genet ; 18(7): 800-7, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20051990

RESUMO

Although human Y chromosomes belonging to haplogroup R1b are quite rare in Africa, being found mainly in Asia and Europe, a group of chromosomes within the paragroup R-P25(*) are found concentrated in the central-western part of the African continent, where they can be detected at frequencies as high as 95%. Phylogenetic evidence and coalescence time estimates suggest that R-P25(*) chromosomes (or their phylogenetic ancestor) may have been carried to Africa by an Asia-to-Africa back migration in prehistoric times. Here, we describe six new mutations that define the relationships among the African R-P25(*) Y chromosomes and between these African chromosomes and earlier reported R-P25 Eurasian sub-lineages. The incorporation of these new mutations into a phylogeny of the R1b haplogroup led to the identification of a new clade (R1b1a or R-V88) encompassing all the African R-P25(*) and about half of the few European/west Asian R-P25(*) chromosomes. A worldwide phylogeographic analysis of the R1b haplogroup provided strong support to the Asia-to-Africa back-migration hypothesis. The analysis of the distribution of the R-V88 haplogroup in >1800 males from 69 African populations revealed a striking genetic contiguity between the Chadic-speaking peoples from the central Sahel and several other Afroasiatic-speaking groups from North Africa. The R-V88 coalescence time was estimated at 9.2-5.6 [corrected] kya, in the early mid Holocene. We suggest that R-V88 is a paternal genetic record of the proposed mid-Holocene migration of proto-Chadic Afroasiatic speakers through the Central Sahara into the Lake Chad Basin, and geomorphological evidence is consistent with this view.


Assuntos
Cromossomos Humanos Y/genética , Emigração e Imigração , Pai , Haplótipos/genética , Idioma , Filogenia , África do Norte , Ásia , Chade , Geografia , Humanos , Masculino , Repetições de Microssatélites/genética , Fatores de Tempo
13.
Mol Biol Evol ; 24(6): 1300-11, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17351267

RESUMO

Detailed population data were obtained on the distribution of novel biallelic markers that finely dissect the human Y-chromosome haplogroup E-M78. Among 6,501 Y chromosomes sampled in 81 human populations worldwide, we found 517 E-M78 chromosomes and assigned them to 10 subhaplogroups. Eleven microsatellite loci were used to further evaluate subhaplogroup internal diversification. The geographic and quantitative analyses of haplogroup and microsatellite diversity is strongly suggestive of a northeastern African origin of E-M78, with a corridor for bidirectional migrations between northeastern and eastern Africa (at least 2 episodes between 23.9-17.3 ky and 18.0-5.9 ky ago), trans-Mediterranean migrations directly from northern Africa to Europe (mainly in the last 13.0 ky), and flow from northeastern Africa to western Asia between 20.0 and 6.8 ky ago. A single clade within E-M78 (E-V13) highlights a range expansion in the Bronze Age of southeastern Europe, which is also detected by haplogroup J-M12. Phylogeography pattern of molecular radiation and coalescence estimates for both haplogroups are similar and reveal that the genetic landscape of this region is, to a large extent, the consequence of a recent population growth in situ rather than the result of a mere flow of western Asian migrants in the early Neolithic. Our results not only provide a refinement of previous evolutionary hypotheses but also well-defined time frames for past human movements both in northern/eastern Africa and western Eurasia.


Assuntos
Cromossomos Humanos Y/genética , Emigração e Imigração , Genética Populacional , Haplótipos/genética , História Natural , África Oriental , África do Norte , Ásia Ocidental , Europa (Continente) , Humanos , Masculino
14.
Am J Hum Genet ; 72(4): 1005-12, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12612863

RESUMO

Thirty-five mitochondrial (mt) DNAs from Spain that harbor the mutation A3243G in association with either MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes) syndrome or a wide array of disease phenotypes (ranging from diabetes and deafness to a mixture of chronic progressive external ophthalmoplegic symptoms and strokelike episodes) were studied by use of high-resolution restriction fragment length polymorphism analysis and control-region sequencing. A total of 34 different haplotypes were found, indicating that all instances of the A3243G mutation are probably due to independent mutational events. Haplotypes were distributed into 13 haplogroups whose frequencies were close to those of the general Spanish population. Moreover, there was no statistically significant difference in haplogroup distribution between patients with MELAS and those with disease phenotypes other than MELAS. Overall, these data indicate that the A3243G mutation harbors all the evolutionary features expected from a severely deleterious mtDNA mutation under strong negative selection, and they reveal that European mtDNA backgrounds do not play a substantial role in modulating the mutation's phenotypic expression.


Assuntos
DNA Mitocondrial/genética , Síndrome MELAS/genética , Adulto , Idoso , Criança , Haplótipos , Humanos , Pessoa de Meia-Idade , Modelos Genéticos , Mutação de Sentido Incorreto , Fenótipo , Polimorfismo de Fragmento de Restrição , Espanha
15.
Am J Hum Genet ; 74(5): 1014-22, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15042509

RESUMO

We explored the phylogeography of human Y-chromosomal haplogroup E3b by analyzing 3401 individuals from five continents. Our data refine the phylogeny of the entire haplogroup, which appears as a collection of lineages with very different evolutionary histories, and reveal signatures of several distinct processes of migrations and/or recurrent gene flow that occurred in Africa and western Eurasia over the past 25000 years. In Europe, the overall frequency pattern of haplogroup E-M78 does not support the hypothesis of a uniform spread of people from a single parental Near Eastern population. The distribution of E-M81 chromosomes in Africa closely matches the present area of distribution of Berber-speaking populations on the continent, suggesting a close haplogroup-ethnic group parallelism. E-M34 chromosomes were more likely introduced in Ethiopia from the Near East. In conclusion, the present study shows that earlier work based on fewer Y-chromosome markers led to rather simple historical interpretations and highlights the fact that many population-genetic analyses are not robust to a poorly resolved phylogeny.


Assuntos
Cromossomos Humanos Y/genética , Emigração e Imigração , Etnicidade/genética , Variação Genética/genética , Haplótipos/genética , Filogenia , África/etnologia , Europa (Continente)/etnologia , Frequência do Gene/genética , Geografia , Humanos , Masculino , Oriente Médio/etnologia , Sibéria/etnologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA