Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Br J Cancer ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117800

RESUMO

BACKGROUND: Cyclin-dependent kinase 9 (CDK9) stimulates oncogenic transcriptional pathways in cancer and CDK9 inhibitors have emerged as promising therapeutic candidates. METHODS: The activity of an orally bioavailable CDK9 inhibitor, CDKI-73, was evaluated in prostate cancer cell lines, a xenograft mouse model, and patient-derived tumor explants and organoids. Expression of CDK9 was evaluated in clinical specimens by mining public datasets and immunohistochemistry. Effects of CDKI-73 on prostate cancer cells were determined by cell-based assays, molecular profiling and transcriptomic/epigenomic approaches. RESULTS: CDKI-73 inhibited proliferation and enhanced cell death in diverse in vitro and in vivo models of androgen receptor (AR)-driven and AR-independent models. Mechanistically, CDKI-73-mediated inhibition of RNA polymerase II serine 2 phosphorylation resulted in reduced expression of BCL-2 anti-apoptotic factors and transcriptional defects. Transcriptomic and epigenomic approaches revealed that CDKI-73 suppressed signaling pathways regulated by AR, MYC, and BRD4, key drivers of dysregulated transcription in prostate cancer, and reprogrammed cancer-associated super-enhancers. These latter findings prompted the evaluation of CDKI-73 with the BRD4 inhibitor AZD5153, a combination that was synergistic in patient-derived organoids and in vivo. CONCLUSION: Our work demonstrates that CDK9 inhibition disrupts multiple oncogenic pathways and positions CDKI-73 as a promising therapeutic agent for prostate cancer, particularly aggressive, therapy-resistant subtypes.

2.
RNA Biol ; 21(1): 1-11, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38112323

RESUMO

Epithelial-mesenchymal transition (EMT) plays important roles in tumour progression and is orchestrated by dynamic changes in gene expression. While it is well established that post-transcriptional regulation plays a significant role in EMT, the extent of alternative polyadenylation (APA) during EMT has not yet been explored. Using 3' end anchored RNA sequencing, we mapped the alternative polyadenylation (APA) landscape following Transforming Growth Factor (TGF)-ß-mediated induction of EMT in human mammary epithelial cells and found APA generally causes 3'UTR lengthening during this cell state transition. Investigation of potential mediators of APA indicated the RNA-binding protein Quaking (QKI), a splicing factor induced during EMT, regulates a subset of events including the length of its own transcript. Analysis of QKI crosslinked immunoprecipitation (CLIP)-sequencing data identified the binding of QKI within 3' untranslated regions (UTRs) was enriched near cleavage and polyadenylation sites. Following QKI knockdown, APA of many transcripts is altered to produce predominantly shorter 3'UTRs associated with reduced gene expression. These findings reveal the changes in APA that occur during EMT and identify a potential role for QKI in this process.


Assuntos
Regulação da Expressão Gênica , Poliadenilação , Humanos , Transição Epitelial-Mesenquimal/genética , Sequência de Bases , Proteínas de Ligação a RNA/genética , Regiões 3' não Traduzidas
3.
Cancer Res ; 84(14): 2313-2332, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38657108

RESUMO

Solid tumors are highly reliant on lipids for energy, growth, and survival. In prostate cancer, the activity of the androgen receptor (AR) is associated with reprogramming of lipid metabolic processes. Here, we identified acyl-CoA synthetase medium chain family members 1 and 3 (ACSM1 and ACSM3) as AR-regulated mediators of prostate cancer metabolism and growth. ACSM1 and ACSM3 were upregulated in prostate tumors compared with nonmalignant tissues and other cancer types. Both enzymes enhanced proliferation and protected prostate cancer cells from death in vitro, whereas silencing ACSM3 led to reduced tumor growth in an orthotopic xenograft model. ACSM1 and ACSM3 were major regulators of the prostate cancer lipidome and enhanced energy production via fatty acid oxidation. Metabolic dysregulation caused by loss of ACSM1/3 led to mitochondrial oxidative stress, lipid peroxidation, and cell death by ferroptosis. Conversely, elevated ACSM1/3 activity enabled prostate cancer cells to survive toxic levels of medium chain fatty acids and promoted resistance to ferroptosis-inducing drugs and AR antagonists. Collectively, this study reveals a tumor-promoting function of medium chain acyl-CoA synthetases and positions ACSM1 and ACSM3 as key players in prostate cancer progression and therapy resistance. Significance: Androgen receptor-induced ACSM1 and ACSM3 mediate a metabolic pathway in prostate cancer that enables the utilization of medium chain fatty acids for energy production, blocks ferroptosis, and drives resistance to clinically approved antiandrogens.


Assuntos
Proliferação de Células , Coenzima A Ligases , Ácidos Graxos , Ferroptose , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Ácidos Graxos/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Receptores Androgênicos/metabolismo , Metabolismo dos Lipídeos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Nat Commun ; 15(1): 4914, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851846

RESUMO

FOXA family proteins act as pioneer factors by remodeling compact chromatin structures. FOXA1 is crucial for the chromatin binding of the androgen receptor (AR) in both normal prostate epithelial cells and the luminal subtype of prostate cancer (PCa). Recent studies have highlighted the emergence of FOXA2 as an adaptive response to AR signaling inhibition treatments. However, the role of the FOXA1 to FOXA2 transition in regulating cancer lineage plasticity remains unclear. Our study demonstrates that FOXA2 binds to distinct classes of developmental enhancers in multiple AR-independent PCa subtypes, with its binding depending on LSD1. Moreover, we reveal that FOXA2 collaborates with JUN at chromatin and promotes transcriptional reprogramming of AP-1 in lineage-plastic cancer cells, thereby facilitating cell state transitions to multiple lineages. Overall, our findings underscore the pivotal role of FOXA2 as a pan-plasticity driver that rewires AP-1 to induce the differential transcriptional reprogramming necessary for cancer cell lineage plasticity.


Assuntos
Linhagem da Célula , Regulação Neoplásica da Expressão Gênica , Fator 3-beta Nuclear de Hepatócito , Neoplasias da Próstata , Fator de Transcrição AP-1 , Masculino , Humanos , Fator 3-beta Nuclear de Hepatócito/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição AP-1/genética , Linhagem Celular Tumoral , Linhagem da Célula/genética , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Fator 3-alfa Nuclear de Hepatócito/genética , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Animais , Cromatina/metabolismo , Cromatina/genética , Plasticidade Celular/genética , Reprogramação Celular/genética , Camundongos , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Elementos Facilitadores Genéticos/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA