Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 127(23): 233202, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34936773

RESUMO

We describe and demonstrate how 3D magnetic field alignment can be inferred from single absorption images of an atomic cloud. While optically pumped magnetometers conventionally rely on temporal measurement of the Larmor precession of atomic dipoles, here a cold atomic vapor provides a spatial interface between vector light and external magnetic fields. Using a vector vortex beam, we inscribe structured atomic spin polarization in a cloud of cold rubidium atoms and record images of the resulting absorption patterns. The polar angle of an external magnetic field can then be deduced with spatial Fourier analysis. This effect presents an alternative concept for detecting magnetic vector fields and demonstrates, more generally, how introducing spatial phases between atomic energy levels can translate transient effects to the spatial domain.

2.
Opt Express ; 26(14): 18513-18522, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-30114030

RESUMO

The interaction of spatially structured light fields with atomic media can generate spatial structures inscribed in the atomic populations and coherences, allowing for example the storage of optical images in atomic vapours. Typically, this involves coherent optical processes based on Raman or EIT transitions. Here we study the simpler situation of shaping atomic populations via spatially dependent optical depletion. Using a near resonant laser beam with a holographically controlled 3D intensity profile, we imprint 3D population structures into a thermal rubidium vapour. This 3D population structure is simultaneously read out by recording the spatially resolved fluorescence of an unshaped probe laser. We find that the reconstructed atomic population structure is largely complementary to the intensity structure of the control beam, however appears blurred due to global repopulation processes. We identify and model these mechanisms which limit the achievable resolution of the 3D atomic population. We expect this work to set design criteria for future 2D and 3D atomic memories.

3.
PLoS One ; 18(7): e0288353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37432927

RESUMO

Borehole gravity sensing can be used in a number of applications to measure features around a well, including rock-type change mapping and determination of reservoir porosity. Quantum technology gravity sensors, based on atom interferometry, have the ability to offer increased survey speeds and reduced need for calibration. While surface sensors have been demonstrated in real world environments, significant improvements in robustness and reductions to radial size, weight, and power consumption are required for such devices to be deployed in boreholes. To realise the first step towards the deployment of cold atom-based sensors down boreholes, we demonstrate a borehole-deployable magneto-optical trap, the core package of many cold atom-based systems. The enclosure containing the magneto-optical trap itself had an outer radius of (60 ± 0.1) mm at its widest point and a length of (890 ± 5) mm. This system was used to generate atom clouds at 1 m intervals in a 14 cm wide, 50 m deep borehole, to simulate how in-borehole gravity surveys are performed. During the survey, the system generated, on average, clouds of (3.0 ± 0.1) × 105 87Rb atoms with the standard deviation in atom number across the survey observed to be as low as 8.9 × 104.


Assuntos
Gravitação , Pinças Ópticas , Calibragem , Sensação Gravitacional , Interferometria
4.
Science ; 374(6573): 1395-1399, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34882470

RESUMO

Time-of-flight three-dimensional (3D) imaging has applications that range from industrial inspection to motion tracking. Depth is recovered by measuring the round-trip flight time of laser pulses, typically using collection optics of several centimeters in diameter. We demonstrate near­video-rate 3D imaging through multimode fibers with a total aperture of several hundred micrometers. We implement aberration correction using wavefront shaping synchronized with a pulsed source and scan the scene at ~23,000 points per second. We image moving objects several meters beyond the end of an ~40-centimeters-long fiber of 50-micrometer core diameter at frame rates of ~5 hertz. Our work grants far-field depth-resolving capabilities to ultrathin microendoscopes, which we expect to have applications to clinical and remote inspection scenarios.

5.
Sci Rep ; 10(1): 10434, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591585

RESUMO

In recent time there has been an increasing amount of interest in developing novel techniques for the generation of complex vector light beams. Amongst these, digital holography stands out as one of the most flexible and versatile with almost unlimited freedom in the generation of scalar and complex vector light fields featuring arbitrary polarisation distributions and spatial profiles. In this manuscript we put forward a novel technique, which relies on the polarisation-insensitive attribute of Digital Micromirror Devices (DMDs). In a prior work where we outlined a new detection scheme based on Stokes projections we alluded to this technique. Here we outline the creation process in full, providing all the details for its experimental implementation. In addition, we fully characterise the performance of such technique, providing a quantitative analysis of the generated modes. To this end, we experimentally reconstruct the transverse polarisation distribution of arbitrary vector modes and compare the ellipticity and flatness of the polarisation ellipses with theoretical predictions. Further, we also generate vector modes with arbitrary degrees of non-separability and determine their degree of concurrence comparing this to theoretical predictions.

6.
Sci Rep ; 9(1): 5241, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30918273

RESUMO

Scanning our surroundings has become one of the key challenges in automation. Effective and efficient position, distance and velocity sensing is key to accurate decision making in automated applications from robotics to driverless cars. Light detection and ranging (LiDAR) has become a key tool in these 3D sensing applications, where the time-of-flight (TOF) of photons is used to recover distance information. These systems typically rely on scanning of a laser spot to recover position information. Here we demonstrate a hybrid LiDAR approach which combines a multi-view camera system for position and distance information, and a simple (scanless) LiDAR system for velocity tracking and depth accuracy. We show that we are able to combine data from the two component systems to provide a compound image of a scene with position, depth and velocity data at more than 1 frame per second with depth accuracy of 2.5 cm or better. This hybrid approach avoids the bulk and expense of scanning systems while adding velocity information. We hope that this approach will offer a simpler, more robust alternative to 3D scanning systems for autonomous vehicles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA