Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38892014

RESUMO

Fetal alcohol spectrum disorders (FASDs) are leading causes of neurodevelopmental disability but cannot be diagnosed early in utero. Because several microRNAs (miRNAs) are implicated in other neurological and neurodevelopmental disorders, the effects of EtOH exposure on the expression of these miRNAs and their target genes and pathways were assessed. In women who drank alcohol (EtOH) during pregnancy and non-drinking controls, matched individually for fetal sex and gestational age, the levels of miRNAs in fetal brain-derived exosomes (FB-Es) isolated from the mothers' serum correlated well with the contents of the corresponding fetal brain tissues obtained after voluntary pregnancy termination. In six EtOH-exposed cases and six matched controls, the levels of fetal brain and maternal serum miRNAs were quantified on the array by qRT-PCR. In FB-Es from 10 EtOH-exposed cases and 10 controls, selected miRNAs were quantified by ddPCR. Protein levels were quantified by ELISA. There were significant EtOH-associated reductions in the expression of several miRNAs, including miR-9 and its downstream neuronal targets BDNF, REST, Synapsin, and Sonic hedgehog. In 20 paired cases, reductions in FB-E miR-9 levels correlated strongly with reductions in fetal eye diameter, a prominent feature of FASDs. Thus, FB-E miR-9 levels might serve as a biomarker to predict FASDs in at-risk fetuses.


Assuntos
Biomarcadores , Encéfalo , Exossomos , Transtornos do Espectro Alcoólico Fetal , MicroRNAs , Humanos , Transtornos do Espectro Alcoólico Fetal/diagnóstico , Transtornos do Espectro Alcoólico Fetal/sangue , Transtornos do Espectro Alcoólico Fetal/genética , Transtornos do Espectro Alcoólico Fetal/metabolismo , Feminino , Exossomos/metabolismo , Exossomos/genética , Gravidez , Biomarcadores/sangue , MicroRNAs/sangue , MicroRNAs/genética , Encéfalo/metabolismo , Adulto , Feto/metabolismo , Estudos de Casos e Controles , Etanol/efeitos adversos , Masculino
2.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37762017

RESUMO

Fetal alcohol spectrum disorders (FASD) are leading causes of neurodevelopmental disability. The mechanisms by which alcohol (EtOH) disrupts fetal brain development are incompletely understood, as are the genetic factors that modify individual vulnerability. Because the phenotype abnormalities of FASD are so varied and widespread, we investigated whether fetal exposure to EtOH disrupts ribosome biogenesis and the processing of pre-ribosomal RNAs and ribosome assembly, by determining the effect of exposure to EtOH on the developmental expression of 18S rRNA and its cleaved forms, members of a novel class of short non-coding RNAs (srRNAs). In vitro neuronal cultures and fetal brains (11-22 weeks) were collected according to an IRB-approved protocol. Twenty EtOH-exposed brains from the first and second trimester were compared with ten unexposed controls matched for gestational age and fetal gender. Twenty fetal-brain-derived exosomes (FB-Es) were isolated from matching maternal blood. RNA was isolated using Qiagen RNA isolation kits. Fetal brain srRNA expression was quantified by ddPCR. srRNAs were expressed in the human brain and FB-Es during fetal development. EtOH exposure slightly decreased srRNA expression (1.1-fold; p = 0.03). Addition of srRNAs to in vitro neuronal cultures inhibited EtOH-induced caspase-3 activation (1.6-fold, p = 0.002) and increased cell survival (4.7%, p = 0.034). The addition of exogenous srRNAs reversed the EtOH-mediated downregulation of srRNAs (2-fold, p = 0.002). EtOH exposure suppressed expression of srRNAs in the developing brain, increased activity of caspase-3, and inhibited neuronal survival. Exogenous srRNAs reversed this effect, possibly by stabilizing endogenous srRNAs, or by increasing the association of cellular proteins with srRNAs, modifying gene transcription. Finally, the reduction in 18S rRNA levels correlated closely with the reduction in fetal eye diameter, an anatomical hallmark of FASD. The findings suggest a potential mechanism for EtOH-mediated neurotoxicity via alterations in 18S rRNA processing and the use of FB-Es for early diagnosis of FASD. Ribosome biogenesis may be a novel target to ameliorate FASD in utero or after birth. These findings are consistent with observations that gene-environment interactions contribute to FASD vulnerability.

3.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613580

RESUMO

Prenatal alcohol exposure can cause developmental abnormalities (fetal alcohol spectrum disorders; FASD), including small eyes, face and brain, and neurobehavioral deficits. These cannot be detected early in pregnancy with available imaging techniques. Early diagnosis could facilitate development of therapeutic interventions. Banked human fetal brains and eyes at 9−22 weeks' gestation were paired with maternal blood samples, analyzed for morphometry, protein, and RNA expression, and apoptotic signaling. Alcohol (EtOH)-exposed (maternal self-report) fetuses were compared with unexposed controls matched for fetal age, sex, and maternal race. Fetal brain-derived exosomes (FB-E) were isolated from maternal blood and analyzed for protein, RNA, and apoptotic markers. EtOH use by mothers, assessed by self-report, was associated with reduced fetal eye diameter, brain size, and markers of synaptogenesis. Brain caspase-3 activity was increased. The reduction in eye and brain sizes were highly correlated with amount of EtOH intake and caspase-3 activity. Levels of several biomarkers in FB-E, most strikingly myelin basic protein (MBP; r > 0.9), correlated highly with morphological abnormalities. Reduction in FB-E MBP levels was highly correlated with EtOH exposure (p < 1.0 × 10−10). Although the morphological features of FAS appear long before they can be detected by live imaging, FB-E in the mother's blood may contain markers, particularly MBP, that predict FASD.


Assuntos
Exossomos , Transtornos do Espectro Alcoólico Fetal , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Feminino , Transtornos do Espectro Alcoólico Fetal/diagnóstico , Caspase 3 , Etanol/toxicidade , Mães , Diagnóstico Precoce
4.
Neurobiol Dis ; 148: 105181, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33189883

RESUMO

INTRODUCTION: Alterations of white matter integrity and subsequent white matter structural deficits are consistent findings in Fetal Alcohol Syndrome (FAS), but knowledge regarding the molecular mechanisms underlying these abnormalities is incomplete. Experimental rodent models of FAS have shown dysregulation of cytokine expression leading to apoptosis of oligodendrocyte precursor cells (OPCs) and altered oligodendrocyte (OL) differentiation, but whether this is representative of human FAS pathogenesis has not been determined. METHODS: Fetal brain tissue (12.2-21.4 weeks gestation) from subjects undergoing elective termination of pregnancy was collected according to an IRB-approved protocol. Ethanol (EtOH) exposure status was classified based on a detailed face-to-face questionnaire adapted from the National Institute on Alcohol Abuse and Alcoholism Prenatal Alcohol and Sudden Infant Death Syndrome and Stillbirth (PASS) study. Twenty EtOH-exposed fetuses were compared with 20 gestational age matched controls. Cytokine and OPC marker mRNA expression was quantified by Real-Time Polymerase chain reaction (qRT-PCR). Patterns of protein expression of OPC markers and active Capase-3 were studied by Fluorescence Activated Cell Sorting (FACS). RESULTS: EtOH exposure was associated with reduced markers of cell viability, OPC differentiation, and OL maturation, while early OL differentiation markers were unchanged or increased. Expression of mRNAs for proteins specific to more mature forms of OL lineage (platelet-derived growth factor α (PDGFRα) and myelin basic protein (MBP) was lower in the EtOH group than in controls. Expression of the multifunctional growth and differentiation-promoting growth factor IGF-1, which is essential for normal development, also was reduced. Reductions were not observed for markers of early stages of OL differentiation, including Nuclear transcription factor NK-2 homeobox locus 2 (Nkx2.2). Expression of mRNAs for the proinflammatory cytokine, tumor necrosis factor-α (TNFα), and several proinflammatory chemokines was higher in the EtOH group compared to controls, including: Growth regulated protein alpha/chemokine (C-X-C motif) ligand 1 (GRO-α/CXCL1), Interleukin 8/chemokine (C-X-C motif) ligand 8 (IL8/CXCL8), Chemokine (C-X-C motif) ligand 6/Granulocyte chemotactic protein 2 (CXCL16/GCP2), epithelial-derived neutrophil-activating protein 78/chemokine (C-X-C motif) ligand 5 (ENA-78/CXCL5), monocyte chemoattractant protein-1 (MCP-1). EtOH exposure also was associated with an increase in the proportion of cells expressing markers of early stage OPCs, such as A2B5 and NG2. Finally, apoptosis (measured by caspase-3 activation) was increased substantially in the EtOH group compared to controls. CONCLUSION: Prenatal EtOH exposure is associated with excessive OL apoptosis and/or delayed OL maturation in human fetal brain. This is accompanied by markedly dysregulated expression of several chemokines and cytokines, in a pattern predictive of increased OL cytotoxicity and reduced OL differentiation. These findings are consistent with findings in animal models of FAS.


Assuntos
Consumo de Bebidas Alcoólicas , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Aborto Induzido , Adulto , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Estudos de Casos e Controles , Feminino , Transtornos do Espectro Alcoólico Fetal , Feto/efeitos dos fármacos , Feto/metabolismo , Idade Gestacional , Humanos , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Gravidez , Primeiro Trimestre da Gravidez , Segundo Trimestre da Gravidez , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Adulto Jovem
5.
Mol Ther ; 27(1): 102-117, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30509565

RESUMO

Liver kinase B1 (LKB1), a downstream effector of cyclic AMP (cAMP)/PKA and phosphatidylinositol 3-kinase (PI3K) pathways, is a determinant for migration and differentiation of many cells, but its role in CNS axon regeneration is unknown. Therefore, LKB1 was overexpressed in sensorimotor cortex of adult mice five days after mid-thoracic spinal cord injury, using an AAV2 vector. Regeneration of corticospinal axons was dramatically enhanced. Next, systemic injection of a mutant-AAV9 vector was used to upregulate LKB1 specifically in neurons. This promoted long-distance regeneration of injured corticospinal fibers into caudal spinal cord in adult mice and regrowth of descending serotonergic and tyrosine hydroxylase immunoreactive axons. Either intracortical or systemic viral delivery of LKB1 significantly improved recovery of locomotor functions in adult mice with spinal cord injury. Moreover, we demonstrated that LKB1 used AMPKα, NUAK1, and ERK as the downstream effectors in the cortex of adult mice. Thus, LKB1 may be a critical factor for enhancing the growth capacity of mature neurons and may be an important molecular target in the treatment of CNS injuries.


Assuntos
Axônios/fisiologia , Regeneração Nervosa/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Traumatismos da Medula Espinal/terapia , Proteínas Quinases Ativadas por AMP , Animais , Axônios/metabolismo , Modelos Animais de Doenças , Neurogênese/fisiologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/metabolismo
6.
Neurobiol Dis ; 98: 25-35, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27888137

RESUMO

Paralysis following spinal cord injury (SCI) is due to interruption of axons and their failure to regenerate. It has been suggested that the small GTPase RhoA may be an intracellular signaling convergence point for several types of growth-inhibiting extracellular molecules. Even if this is true in vitro, it is not clear from studies in mammalian SCI, whether the effects of RhoA manipulations on axon growth in vivo are due to a RhoA-mediated inhibition of true regeneration or only of collateral sprouting from spared axons, since work on SCI generally is performed with partial injury models. RhoA also has been implicated in local neuronal apoptosis after SCI, but whether this reflects an effect on axotomy-induced cell death or an effect on other pathological mechanisms is not known. In order to resolve these ambiguities, we studied the effects of RhoA knockdown in the sea lamprey central nervous system (CNS), where after complete spinal cord transection (TX), robust but incomplete regeneration of large axons belonging to individually identified reticulospinal (RS) neurons occurs, and where some RS neurons show unambiguous delayed retrograde apoptosis after axotomy. RhoA protein was detected in neurons and axons of the lamprey brain and spinal cord, and its expression was increased post-TX. Knockdown of RhoA in vivo by retrogradely-delivered morpholino antisense oligonucleotides (MOs) to the RS neurons significantly reduced retrograde apoptosis signaling in identified RS neurons post-SCI, as indicated by Fluorochrome Labeled Inhibitor of Caspases (FLICA) in brain wholemounts. In individual RS neurons, the reduction of caspase activation by RhoA knockdown began at 2weeks post-TX and was still seen at 8weeks. RhoA knockdown slowed axon retraction and possibly increased early axon regeneration in the proximal stump. The number of axons regenerating beyond the lesion more than 5mm at 10weeks post-TX also was increased. Thus RhoA knockdown both enhanced true axon regeneration and inhibited retrograde apoptosis signaling after SCI.


Assuntos
Morte Celular/fisiologia , Proteínas de Peixes/metabolismo , Neurônios/metabolismo , Traumatismos da Medula Espinal/metabolismo , Regeneração da Medula Espinal/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Caspases/metabolismo , Modelos Animais de Doenças , Proteínas de Peixes/genética , Técnicas de Silenciamento de Genes , Crescimento Neuronal/fisiologia , Neurônios/patologia , Petromyzon , Medula Espinal/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia , Fatores de Tempo , Proteína rhoA de Ligação ao GTP/genética
7.
Neurobiol Dis ; 73: 36-48, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25220840

RESUMO

Extracellular matrix molecule chondroitin sulfate proteoglycans (CSPGs) are highly upregulated in scar tissues and form a potent chemical barrier for CNS axon regeneration. Recent studies support that the receptor protein tyrosine phosphatase σ (PTPσ) and its subfamily member leukocyte common antigen related phosphatase (LAR) act as transmembrane receptors to mediate CSPG inhibition. PTPσ deficiency increased regrowth of ascending axons into scar tissues and descending corticospinal tract (CST) axons into the caudal spinal cord after spinal cord injury (SCI). Pharmacological LAR inhibition enhanced serotonergic axon growth in SCI mice. However, transgenic LAR deletion on axon growth in vivo and the role of LAR in regulating regrowth of other fiber tracts have not been studied. Here, we studied the role of LAR in restricting regrowth of injured descending CNS axons in deficient mice. LAR deletion increased regrowth of serotonergic axons into scar tissues and caudal spinal cord after dorsal over-hemitransection. LAR deletion also stimulated regrowth of CST fibers into the caudal spinal cord. LAR protein was upregulated days to weeks after injury and co-localized to serotonergic and CST axons. Moreover, LAR deletion improved functional recovery by increasing BMS locomotor scores and stride length and reducing grid walk errors. This is the first transgenic study that demonstrates the crucial role of LAR in restricting regrowth of injured CNS axons.


Assuntos
Regeneração Nervosa/fisiologia , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Benzofuranos , Biotina/análogos & derivados , Encéfalo/metabolismo , Encéfalo/patologia , Dextranos , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Knockout , Atividade Motora/genética , Atividade Motora/fisiologia , Mutação/genética , Regeneração Nervosa/genética , Tratos Piramidais/metabolismo , Tratos Piramidais/patologia , Quinolinas , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Recuperação de Função Fisiológica/genética , Serotonina/metabolismo , Fatores de Tempo
8.
Ann Neurol ; 74(6): 768-77, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23955583

RESUMO

Injuries to central nervous system axons result not only in Wallerian degeneration of the axon distal to the injury, but also in death or atrophy of the axotomized neurons, depending on injury location and neuron type. No method of permanently avoiding these changes has been found, despite extensive knowledge concerning mechanisms of secondary neuronal injury. The autonomous endoplasmic reticulum (ER) stress pathway in neurons has recently been implicated in retrograde neuronal degeneration. In addition to the emerging role of ER morphology in axon maintenance, we propose that ER stress is a common neuronal response to disturbances in axon integrity and a general mechanism for neurodegeneration. Thus, manipulation of the ER stress pathway could have important therapeutic implications for neuroprotection.


Assuntos
Axônios/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Degeneração Neural/metabolismo , Animais , Axônios/patologia , Humanos , Degeneração Neural/patologia , Vias Neurais/metabolismo , Vias Neurais/patologia
9.
Birth Defects Res A Clin Mol Teratol ; 100(6): 453-62, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24954432

RESUMO

BACKGROUND: Myelomeningocele (MMC) is a common congenital malformation and the most severe form of spina bifida characterized by the protrusion of spinal cord and meninges through the spinal defect. Our objective was to improve the assessment of congenital vertebral defects in animal models of MMC using three-dimensional high resolution micro-computed tomography (micro-CT) imaging and quantitative digital analyses methods. METHODS: Lumbosacral MMC was induced in fetal rats by exposure of pregnant mothers at embryonic day 10 (E10) to all-trans retinoic acid, and rats were examined at term (embryonic day 22). The axial skeleton was examined in an MMC model for the first time using ex vivo micro-CT at 10 µm voxel resolution to allow high resolution two-dimensional and three-dimensional characterization of anomalies in lumbosacral vertebrae, and quantitative assessment of distances between dorsal vertebral arches in lumbosacral regions in MMC rats, compared with normal controls. RESULTS: We observed, in detail, skeletal defects in lumbosacral vertebra of MMC rats, including in the morphology of individual dorsal vertebral arches. Use of high resolution micro-CT has also enabled us to identify the delayed (nonfused) or absent ossification in vertebral bodies, increased fusion of adjacent lateral vertebral elements, and quantify the extent of dorsal arch widening. Distances between dorsal vertebral arches showed statistically significant increases from L5 through S4 in MMC rats, compared with normal controls. CONCLUSION: High-resolution micro-CT combined with digital quantification methods is a powerful technique ideally suited for precise assessment of complex congenital skeletal abnormalities such as examined in this rodent model of MMC.


Assuntos
Meningomielocele/patologia , Coluna Vertebral/patologia , Animais , Modelos Animais de Doenças , Feminino , Feto , Humanos , Processamento de Imagem Assistida por Computador , Região Lombossacral , Meningomielocele/induzido quimicamente , Meningomielocele/diagnóstico por imagem , Meningomielocele/embriologia , Gravidez , Ratos , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/embriologia , Tretinoína , Microtomografia por Raio-X
10.
Front Cell Neurosci ; 17: 1292012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179205

RESUMO

Previously, we reported that RhoA knockdown by morpholino antisense oligonucleotides (MOs), and enzymatic digestion of chondroitin sulfate proteoglycans (CSPGs) at the site of injury with chondroitinase ABC (ChABC), each can reduce retrograde neuronal apoptosis after spinal cord transection in the lamprey. To elucidate the mechanisms in neuronal survival and axon regeneration, we have investigated whether these two effects are additive in vivo. We used lampreys as a spinal cord injury model. MOs were used to knockdown RhoA and Chondroitinase ABC (ChABC) was used to digest CSPGs in vivo. Retrograde labeling, fluorochrome-labeled inhibitor of caspase activity (FLICA), immunohistochemistry, and western blots were performed to assess axonal regeneration, neuronal apoptotic signaling and Akt activation. Four treatment combinations were evaluated at 2-, 4-, and 10-weeks post-transection: (1) Control MO plus enzyme buffer (Ctrl); (2) control MO plus ChABC; (3) RhoA MO plus enzyme buffer (RhoA MO); and (4) RhoA MO plus ChABC (RhoA MO + ChABC). Consistent with our previous findings, at 4-weeks post-transection, there was less caspase activation in the ChABC and RhoA MO groups than in the Ctrl group. Moreover, the RhoA MO plus ChABC group had the best protective effect on identified reticulospinal (RS) neurons among the four treatment combinations. At 2 weeks post-transection, when axons have retracted maximally in the rostral stump and are beginning to regenerate back toward the lesion, the axon tips in the three treatment groups each were closer to the transection than those in the Ctr MO plus enzyme buffer group. Long-term axon regeneration also was evaluated for the large, individually identified RS neurons at 10 weeks post-transection by retrograde labeling. The percent regenerated axons in the RhoA MO plus ChABC group was greater than that in any of the other groups. Akt phosphorylation levels at threonine 308 was quantified in the identified RS neurons by western blots and immunofluorescence. The RhoA MO plus ChABC treatment enhanced pAkt-308 phosphorylation more than any of the other treatment groups. Although some of the effects of CSPGs are mediated through RhoA activation, some growth-inhibiting mechanisms of RhoA and CSPGs are independent of each other, so combinatorial therapies may be warranted.

11.
Front Neurosci ; 17: 1214958, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621718

RESUMO

Introduction: Mitochondrial dysfunction is postulated to be a central event in fetal alcohol spectrum disorders (FASD). People with the most severe form of FASD, fetal alcohol syndrome (FAS) are estimated to live only 34 years (95% confidence interval, 31 to 37 years), and adults who were born with any form of FASD often develop early aging. Mitochondrial dysfunction and mitochondrial DNA (mtDNA) damage, hallmarks of aging, are postulated central events in FASD. Ethanol (EtOH) can cause mtDNA damage, consequent increased oxidative stress, and changes in the mtDNA repair protein 8-oxoguanine DNA glycosylase-1 (OGG1). Studies of molecular mechanisms are limited by the absence of suitable human models and non-invasive tools. Methods: We compared human and rat EtOH-exposed fetal brain tissues and neuronal cultures, and fetal brain-derived exosomes (FB-Es) from maternal blood. Rat FASD was induced by administering a 6.7% alcohol liquid diet to pregnant dams. Human fetal (11-21 weeks) brain tissue was collected and characterized by maternal self-reported EtOH use. mtDNA was amplified by qPCR. OGG1 and Insulin-like growth factor 1 (IGF-1) mRNAs were assayed by qRT-PCR. Exosomal OGG1 was measured by ddPCR. Results: Maternal EtOH exposure increased mtDNA damage in fetal brain tissue and FB-Es. The damaged mtDNA in FB-Es correlated highly with small eye diameter, an anatomical hallmark of FASD. OGG1-mediated mtDNA repair was inhibited in EtOH-exposed fetal brain tissues. IGF-1 rescued neurons from EtOH-mediated mtDNA damage and OGG1 inhibition. Conclusion: The correlation between mtDNA damage and small eye size suggests that the amount of damaged mtDNA in FB-E may serve as a marker to predict which at risk fetuses will be born with FASD. Moreover, IGF-1 might reduce EtOH-caused mtDNA damage and neuronal apoptosis.

12.
Obstet Gynecol Res ; 6(2): 127-138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125903

RESUMO

Introduction: Up to 9.9% of children have fetal alcohol spectrum disorders (FASD), the most frequent cause of intellectual disability in the US. FASD may involve abnormal brain development, including dysmyelination, suggesting abnormal development of oligodendrocytes (OLs), which make myelin and are rich in lipids. Indeed, low serum levels of omega-3 fatty acids (ω-3) have been reported in FASD. Free fatty acids bind to specific receptors (FFARs). We have isolated cell type-specific fetal brain-derived exosomes (FB-E) from maternal blood and sampled their contents to search for lipid-related biomarkers that predict FASD. Methods: Blood samples were collected from two groups of pregnant women: 1) those who consumed EtOH during pregnancy, and 2) non-EtOH using controls, under an IRB-approved protocol. Serum and OL-derived exosomes (OL-Es) were used to assay myelin basic protein (MBP) and FFAR by ELISA and droplet digital PCR (ddPCR), respectively. Results: FFAR and MBP proteins were downregulated in the EtOH group compared to controls, and this difference was greatest in OL-Es from maternal blood compared maternal serum. Conclusion: MBP and FFAR levels were reduced in OL-Es from EtOH-consuming pregnant women. The data suggest potential therapeutic targets to predict which children are at risk for developing FASD and reduce dysmyelination in developing.

13.
Obstet Gynecol Res ; 6(2): 160-170, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538811

RESUMO

Introduction: Cerebral Palsy (CP), the most common cause of disability in children, is phenotypically heterogeneous. Approximately 20% of cases develop severe scoliosis. A pathological hallmark of CP is periventricular leukomalacia (PVL), which is due to dysmyelination, suggesting the possibility of a lipidomic abnormality. Risk factors for CP include perinatal hypoxia, prematurity, multiple gestation, ischemia, infection, and maternal alcohol consumption. There is evidence for low serum levels of omega-3 (ω-3) fatty acids in CP patients, and separately in idiopathic scoliosis. Many effects of free fatty acids (FFAs) are mediated via specific G protein-coupled free fatty acid receptors (FFARs), which play essential roles as nutritional and signaling molecules. FFAs, including ω-3, and their receptors are involved in the development and metabolism of oligodendrocytes (OLs), and are critical to myelination. Thus, the cases of CP that will develop severe scoliosis might be those in which there is a deficiency of ω-3, FFARs, or other lipidomic abnormality that is detectable early in the plasma. If so, we might be able to predict scoliosis and prevent it with dietary supplementation. Methods: Blood samples were collected from four groups of patients at the Philadelphia Shriners Children's Hospital (SCH-P): 1) patients with CP; 2) severe scoliosis (>40o); 3) CP plus scoliosis; and 4) non-impaired controls stratified by age (2-18 yrs), gender, and race/ethnicity, under an IRB-approved protocol. Serum proteins and RNA were purified, and OL-derived exosomes (OL-Es) isolated, using myelin basic protein (MBP) as a late OL marker. Protein was used for the detection of MBP and FFAR by enzyme-linked immunosorbent assays (ELISAs), and by flow cytometry. RNA was assayed by digital droplet polymerase chain reaction (ddPCR) for OL markers and FFAR expression. Results: FFAR and MBP proteins were downregulated in each of the three patient groups compared to controls, and this difference was greatest in both patients with CP plus scoliosis. Conclusion: Altogether, MBP and FFAR levels were reduced in OL-Es from both children with CP plus scoliosis. The lipid abnormalities specific to CP with scoliosis were concentrated in OLs. Our data might i) suggest therapeutic targets to reduce dysmyelination and scoliosis in CP, ii) predict which children are at risk for developing scoliosis, iii) lead to therapeutic trials of fatty acids for CP and other dysmyelinating neurological disorders.

14.
Neural Regen Res ; 17(3): 497-502, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34380877

RESUMO

The pathology of fetal alcohol syndrome and the less severe fetal alcohol spectrum disorders includes brain dysmyelination. Recent studies have shed light on the molecular mechanisms underlying these white matter abnormalities. Rodent models of fetal alcohol syndrome and human studies have shown suppressed oligodendrocyte differentiation and apoptosis of oligodendrocyte precursor cells. Ethanol exposure led to reduced expression of myelin basic protein and delayed myelin basic protein expression in rat and mouse models of fetal alcohol syndrome and in human histopathological specimens. Several studies have reported increased expression of many chemokines in dysmyelinating disorders in central nervous system, including multiple sclerosis and fetal alcohol syndrome. Acute ethanol exposure reduced levels of the neuroprotective insulin-like growth factor-1 in fetal and maternal sheep and in human fetal brain tissues, while ethanol increased the expression of tumor necrosis factor α in mouse and human neurons. White matter lesions have been induced in the developing sheep brain by alcohol exposure in early gestation. Rat fetal alcohol syndrome models have shown reduced axon diameters, with thinner myelin sheaths, as well as reduced numbers of oligodendrocytes, which were also morphologically aberrant oligodendrocytes. Expressions of markers for mature myelination, including myelin basic protein, also were reduced. The accumulating knowledge concerning the mechanisms of ethanol-induced dysmyelination could lead to the development of strategies to prevent dysmyelination in children exposed to ethanol during fetal development. Future studies using fetal oligodendrocyte- and oligodendrocyte precursor cell-derived exosomes isolated from the mother's blood may identify biomarkers for fetal alcohol syndrome and even implicate epigenetic changes in early development that affect oligodendrocyte precursor cell and oligodendrocyte function in adulthood. By combining various imaging modalities with molecular studies, it may be possible to determine which fetuses are at risk and to intervene therapeutically early in the pregnancy.

15.
Cells ; 11(15)2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35954164

RESUMO

Axotomy in the CNS activates retrograde signals that can trigger regeneration or cell death. Whether these outcomes use different injury signals is not known. Local protein synthesis in axon tips plays an important role in axon retraction and regeneration. Microarray and RNA-seq studies on cultured mammalian embryonic or early postnatal peripheral neurons showed that axon growth cones contain hundreds to thousands of mRNAs. In the lamprey, identified reticulospinal neurons vary in the probability that their axons will regenerate after axotomy. The bad regenerators undergo early severe axon retraction and very delayed apoptosis. We micro-aspirated axoplasms from 10 growing, 9 static and 5 retracting axon tips of spinal cord transected lampreys and performed single-cell RNA-seq, analyzing the results bioinformatically. Genes were identified that were upregulated selectively in growing (n = 38), static (20) or retracting tips (18). Among them, map3k2, csnk1e and gtf2h were expressed in growing tips, mapk8(1) was expressed in static tips and prkcq was expressed in retracting tips. Venn diagrams revealed more than 40 components of MAPK signaling pathways, including jnk and p38 isoforms, which were differentially distributed in growing, static and/or retracting tips. Real-time q-PCR and immunohistochemistry verified the colocalization of map3k2 and csnk1e in growing axon tips. Thus, differentially regulated MAPK and circadian rhythm signaling pathways may be involved in activating either programs for axon regeneration or axon retraction and apoptosis.


Assuntos
Axônios , Traumatismos da Medula Espinal , Animais , Axônios/metabolismo , Lampreias/genética , Mamíferos , Regeneração Nervosa/genética , RNA-Seq , Transdução de Sinais , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Transcriptoma/genética
16.
Drug Alcohol Depend ; 232: 109306, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35051699

RESUMO

The ß-lactam antibiotic ceftriaxone (CTX) is a glutamate transporter subtype 1 (GLT-1) enhancer that reduces cocaine reinforcing efficacy and relapse in rats, but pharmacokinetic liabilities limit translational utility. An attractive alternative is clavulanic acid (CLAV), a structurally related ß-lactamase inhibitor and component of FDA-approved Augmentin. CLAV retains the GLT-1 enhancing effects of CTX but displays greater oral bioavailability, brain penetrability and negligible antibacterial activity. CLAV reduces morphine conditioned place preference (CPP) and ethanol consumption in rats, but knowledge about the efficacy of CLAV in preclinical models of drug addiction remains sparse. Here, we investigated effects of CLAV (10 mg/kg, IP) on the acquisition, expression, and maintenance of cocaine CPP in rats, and on two glutamate biomarkers associated with cocaine dependence, GLT-1 and glutamate carboxypeptidase II (GCPII). CLAV administered during cocaine conditioning (10 mg/kg, IP x 4 d) did not affect the development of cocaine CPP. However, a single CLAV injection, administered after the conditioning phase, reduced the expression of cocaine CPP. In rats with established cocaine preference, repeated CLAV administration facilitated extinction of cocaine CPP. In the nucleus accumbens, acute CLAV exposure reduced GCPII protein levels and activity, and a 10-d CLAV treatment regimen enhanced GLT-1 levels. These results suggest that CLAV reduces expression and maintenance of cocaine CPP but lacks effect against development of CPP. Moreover, the ability of a single injection of CLAV to reduce both GCPII activity and protein levels, as well as expression of cocaine CPP, points toward studying GCPII as a therapeutic target of CLAV.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Animais , Ácido Clavulânico/metabolismo , Ácido Clavulânico/farmacologia , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/farmacologia , Núcleo Accumbens , Ratos
17.
Front Mol Neurosci ; 15: 918871, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832392

RESUMO

Axon regrowth after spinal cord injury (SCI) is inhibited by several types of inhibitory extracellular molecules in the central nervous system (CNS), including chondroitin sulfate proteoglycans (CSPGs), which also are components of perineuronal nets (PNNs). The axons of lampreys regenerate following SCI, even though their spinal cords contain CSPGs, and their neurons are enwrapped by PNNs. Previously, we showed that by 2 weeks after spinal cord transection in the lamprey, expression of CSPGs increased in the lesion site, and thereafter, decreased to pre-injury levels by 10 weeks. Enzymatic digestion of CSPGs in the lesion site with chondroitinase ABC (ChABC) enhanced axonal regeneration after SCI and reduced retrograde neuronal death. Lecticans (aggrecan, versican, neurocan, and brevican) are the major CSPG family in the CNS. Previously, we cloned a cDNA fragment that lies in the most conserved link-domain of the lamprey lecticans and found that lectican mRNAs are expressed widely in lamprey glia and neurons. Because of the lack of strict one-to-one orthology with the jawed vertebrate lecticans, the four lamprey lecticans were named simply A, B, C, and D. Using probes that distinguish these four lecticans, we now show that they all are expressed in glia and neurons but at different levels. Expression levels are relatively high in embryonic and early larval stages, gradually decrease, and are upregulated again in adults. Reductions of lecticans B and D are greater than those of A and C. Levels of mRNAs for lecticans B and D increased dramatically after SCI. Lectican D remained upregulated for at least 10 weeks. Multiple cells, including glia, neurons, ependymal cells and microglia/macrophages, expressed lectican mRNAs in the peripheral zone and lesion center after SCI. Thus, as in mammals, lamprey lecticans may be involved in axon guidance and neuroplasticity early in development. Moreover, neurons, glia, ependymal cells, and microglia/macrophages, are responsible for the increase in CSPGs during the formation of the glial scar after SCI.

18.
PLoS Genet ; 4(12): e1000317, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19112491

RESUMO

In many mammalian neurons, dense clusters of ion channels at the axonal initial segment and nodes of Ranvier underlie action potential generation and rapid conduction. Axonal clustering of mammalian voltage-gated sodium and KCNQ (Kv7) potassium channels is based on linkage to the actin-spectrin cytoskeleton, which is mediated by the adaptor protein ankyrin-G. We identified key steps in the evolution of this axonal channel clustering. The anchor motif for sodium channel clustering evolved early in the chordate lineage before the divergence of the wormlike cephalochordate, amphioxus. Axons of the lamprey, a very primitive vertebrate, exhibited some invertebrate features (lack of myelin, use of giant diameter to hasten conduction), but possessed narrow initial segments bearing sodium channel clusters like in more recently evolved vertebrates. The KCNQ potassium channel anchor motif evolved after the divergence of lampreys from other vertebrates, in a common ancestor of shark and humans. Thus, clustering of voltage-gated sodium channels was a pivotal early innovation of the chordates. Sodium channel clusters at the axon initial segment serving the generation of action potentials evolved long before the node of Ranvier. KCNQ channels acquired anchors allowing their integration into pre-existing sodium channel complexes at about the same time that ancient vertebrates acquired myelin, saltatory conduction, and hinged jaws. The early chordate refinements in action potential mechanisms we have elucidated appear essential to the complex neural signaling, active behavior, and evolutionary success of vertebrates.


Assuntos
Axônios/metabolismo , Cordados/metabolismo , Evolução Molecular , Canais Iônicos/metabolismo , Nós Neurofibrosos/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Axônios/química , Cordados/classificação , Cordados/genética , Humanos , Invertebrados/química , Invertebrados/classificação , Invertebrados/genética , Invertebrados/metabolismo , Canais Iônicos/química , Canais Iônicos/genética , Dados de Sequência Molecular , Filogenia , Nós Neurofibrosos/química , Nós Neurofibrosos/genética , Alinhamento de Sequência
19.
Front Cell Dev Biol ; 9: 653638, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842481

RESUMO

Paralysis following spinal cord injury (SCI) is due to failure of axonal regeneration. It is believed that axon growth is inhibited by the presence of several types of inhibitory molecules in central nervous system (CNS), including the chondroitin sulfate proteoglycans (CSPGs). Many studies have shown that digestion of CSPGs with chondroitinase ABC (ChABC) can enhance axon growth and functional recovery after SCI. However, due to the complexity of the mammalian CNS, it is still unclear whether this involves true regeneration or only collateral sprouting by uninjured axons, whether it affects the expression of CSPG receptors such as protein tyrosine phosphatase sigma (PTPσ), and whether it influences retrograde neuronal apoptosis after SCI. In the present study, we assessed the roles of CSPGs in the regeneration of spinal-projecting axons from brainstem neurons, and in the process of retrograde neuronal apoptosis. Using the fluorochrome-labeled inhibitor of caspase activity (FLICA) method, apoptotic signaling was seen primarily in those large, individually identified reticulospinal (RS) neurons that are known to be "bad-regenerators." Compared to uninjured controls, the number of all RS neurons showing polycaspase activity increased significantly at 2, 4, 8, and 11 weeks post-transection (post-TX). ChABC application to a fresh TX site reduced the number of polycaspase-positive RS neurons at 2 and 11 weeks post-TX, and also reduced the number of active caspase 3-positive RS neurons at 4 weeks post-TX, which confirmed the beneficial role of ChABC treatment in retrograde apoptotic signaling. ChABC treatment also greatly promoted axonal regeneration at 10 weeks post-TX. Correspondingly, PTPσ mRNA expression was reduced in the perikaryon. Previously, PTPσ mRNA expression was shown to correlate with neuronal apoptotic signaling at 2 and 10 weeks post-TX. In the present study, this correlation persisted after ChABC treatment, which suggests that PTPσ may be involved more generally in signaling axotomy-induced retrograde neuronal apoptosis. Moreover, ChABC treatment caused Akt activation (pAkt-308) to be greatly enhanced in brain post-TX, which was further confirmed in individually identified RS neurons. Thus, CSPG digestion not only enhances axon regeneration after SCI, but also inhibits retrograde RS neuronal apoptosis signaling, possibly by reducing PTPσ expression and enhancing Akt activation.

20.
Front Cell Neurosci ; 14: 177, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719586

RESUMO

After an injury to the central nervous system (CNS), functional recovery is limited by the inability of severed axons to regenerate and form functional connections with appropriate target neurons beyond the injury. Despite tremendous advances in our understanding of the mechanisms of axon growth, and of the inhibitory factors in the injured CNS that prevent it, disappointingly little progress has been made in restoring function to human patients with CNS injuries, such as spinal cord injury (SCI), through regenerative therapies. Clearly, the large number of overlapping neuron-intrinsic and -extrinsic growth-inhibitory factors attenuates the benefit of neutralizing any one target. More daunting is the distances human axons would have to regenerate to reach some threshold number of target neurons, e.g., those that occupy one complete spinal segment, compared to the distances required in most experimental models, such as mice and rats. However, the difficulties inherent in studying mechanisms of axon regeneration in the mature CNS in vivo have caused researchers to rely heavily on extrapolation from studies of axon regeneration in peripheral nerve, or of growth cone-mediated axon development in vitro and in vivo. Unfortunately, evidence from several animal models, including the transected lamprey spinal cord, has suggested important differences between regeneration of mature CNS axons and growth of axons in peripheral nerve, or during embryonic development. Specifically, long-distance regeneration of severed axons may not involve the actin-myosin molecular motors that guide embryonic growth cones in developing axons. Rather, non-growth cone-mediated axon elongation may be required to propel injured axons in the mature CNS. If so, it may be necessary to use other experimental models to promote regeneration that is sufficient to contact a critical number of target neurons distal to a CNS lesion. This review examines the cytoskeletal underpinnings of axon growth, focusing on the elongating axon tip, to gain insights into how CNS axons respond to injury, and how this might affect the development of regenerative therapies for SCI and other CNS injuries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA