Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731399

RESUMO

The antibacterial effects of a selection of volatile fatty acids (acetic, propionic, butyric, valeric, and caproic acids) relevant to anaerobic digestion were investigated at 1, 2 and 4 g/L. The antibacterial effects were characterised by the dynamics of Enterococcus faecalis NCTC 00775, Escherichia coli JCM 1649 and Klebsiella pneumoniae A17. Mesophilic anaerobic incubation to determine the minimum bactericidal concentration (MBC) and median lethal concentration of the VFAs was carried out in Luria Bertani broth at 37 °C for 48 h. Samples collected at times 0, 3, 6, 24 and 48 h were used to monitor bacterial kinetics and pH. VFAs at 4 g/L demonstrated the highest bactericidal effect (p < 0.05), while 1 g/L supported bacterial growth. The VFA cocktail was the most effective, while propionic acid was the least effective. Enterococcus faecalis NCTC 00775 was the most resistant strain with the VFAs MBC of 4 g/L, while Klebsiella pneumoniae A17 was the least resistant with the VFAs MBC of 2 g/L. Allowing a 48 h incubation period led to more log decline in the bacterial numbers compared to earlier times. The VFA cocktail, valeric, and caproic acids at 4 g/L achieved elimination of the three bacteria strains, with over 7 log10 decrease within 48 h.


Assuntos
Antibacterianos , Enterococcus faecalis , Ácidos Graxos Voláteis , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/crescimento & desenvolvimento , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/crescimento & desenvolvimento , Anaerobiose , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Propionatos/farmacologia , Concentração de Íons de Hidrogênio , Ácidos Pentanoicos/farmacologia
2.
Environ Res ; 236(Pt 1): 116725, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37487922

RESUMO

The objectives of this study were to assess the role of soil organic matter on retaining plastic additives, Di(2-ethylhexyl) phthalate (DEHP), Bisphenol A (BPA) and Benzophenone (BP), to postulate the retention mechanisms and mobility in soil. Batch experiments were conducted for red yellow podzolic soil (OM) and soil subjected to high temperature oxidation at 600 °C for 2 h to remove total organic matter (OMR). Pristine soil, which contains organic matter abbreviated as OM (soil with organic matter) whereas total organic matter removed soil is abbreviated as OMR (organic matter removed soil). The pH edge and kinetic experiments were conducted with 20 g/L soil suspension spiked with 10 mg/L of each additive, whereas 1-20 mg/L concentration range was used in isotherm experiments and analyzed using high performance liquid chromatography. DEHP demonstrated the highest retention, 331 and 615.16 mg/kg in OM and OMR soils respectively, at pH 6.6. However, BPA and BP showed highest retentions of 132 and 128 mg/kg, respectively around pH 4.3 in pristine soil. DEHP interaction with soil OM indicated weak physical bonding whereas chemisorption to OMR soil. In the case of BPA, physisorption governed its interaction with both soil organic matter and mineral fraction. Nevertheless, BP demonstrated chemical interactions with OM and minerals. Desorption of DEHP was close to 100% however, BPA and BP were <15%. Overall, DEHP and BPA could be easily released into soil water and possibly be available for plant uptake while, BP is immobilized in soil.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Poluentes do Solo , Dietilexilftalato/análise , Solo/química , Poluentes do Solo/análise , Benzofenonas/análise
3.
J Environ Manage ; 251: 109512, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31563052

RESUMO

The Chinese Government is working to establish an effective framework in managing soil contamination. Heavy metal contamination is key to the discussion about soil quality, health and remediation in China. Soil heavy metal contamination in China is briefly reviewed and the concepts of background values and standards discussed. The importance of contaminated land and its management for China food security and urbanization are discussed. Priorities for China's next steps in developing an effective research and management regime are presented. We propose that critically important to the science-based risk assessment of contaminants in soils is the incorporation of speciation and bioavailability into the measurement and evaluation criteria. Consideration of soil biology/ecological endpoints will be necessary to protect ecosystem health. National and regional/local scenarios of land use type/usage will address residential/urban re-use of industrial land as well as varying agricultural scenarios.


Assuntos
Metais Pesados , Poluentes do Solo , China , Ecossistema , Monitoramento Ambiental , Solo
4.
Anal Chem ; 90(19): 11703-11709, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30134659

RESUMO

The fate and behavior of polycyclic aromatic hydrocarbons (PAHs) in soil are of interest in the risk assessment of contaminated land and are usually based on determinations of fractions extracted from soil. For decades, either single- or sequential-solvent extractions have been used to determine PAH extractability in soils; however, there is a lack of certainty as to which fractions are being extracted by these techniques. This study is the first report of differences and similarities in the extractability of benzo[ a]pyrene (B[ a]P) in four contrasting soils (sandy loam, loamy sand, clayey loam, and sandy) when determined using both single-solvent (dichloromethane/acetone (DCM/Ace) mixture) and sequential-solvent (butanol followed by DCM/Ace) extraction. Residues after extraction were subjected to methanolic saponification (MeKOH). Butanol (BuOH) extractability and total extractability of B[ a]P following sequential-solvent extraction decreased significantly ( p < 0.05) with time after addition of B[ a]P. The decrease in BuOH extractability was particularly marked in the organic-matter-rich clayey-loam soil, which also had the largest (>40%) amounts of nonextractable residues. The cumulative amounts of B[ a]P extracted in each soil by single- and sequential-solvent extractions were similar ( p > 0.05) at each aging period, which indicated access to similar B[ a]P fractions in soil by both solvent extractions. The similarities in the amounts of B[ a]P nonextractable residues recovered by MeKOH from pre-extracted soils, through either of the extraction methods, confirms that the total extractable B[ a]P fractions from both methods are similar.

5.
Anal Chem ; 90(21): 13104-13111, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30269489

RESUMO

The fate, impacts, and significance of polycyclic aromatic hydrocarbon (PAH) nonextractable residues (NERs) in soils remain largely unexplored in risk-based contaminated land management. In this study, seven different methanolic and nonmethanolic alkaline treatments, and the conventional methanolic saponification, were used to extract benzo[ a]pyrene (B[ a]P) NERs that had been aged for 180 d from four contrasting soils. Up to 16% and 55% of the amount of B[ a]P spiked (50 mg/kg) into soils was nonextractable after 2 d and 180 of aging, respectively, indicating rapid and progressive B[ a]P sequestration in soils over time. The recovery of B[ a]P from soils after 180 d of aging was increased by up to 48% by the seven different alkaline extractions, although the extraction efficiencies of the different alkaline treatments did not differ significantly ( p > 0.05). Approximately 40% of B[ a]P NERs in the sandy-clay-loam organic matter-rich soil was recovered by the exhaustive alkaline extractions after 180 d of aging, compared to only 10% using conventional methanolic saponification. However, the amounts of B[ a]P NERs recovered depend on soil properties and the amounts of NERs in soils. A significant correlation ( R2 = 0.69, p < 0.001) was also observed between the amounts of B[ a]P recovered by each of the seven alkaline extractions in the contrasting soils and corresponding NERs at 180 d of aging, indicating a potential association warranting further investigations. Extraction techniques that estimate the amounts of PAH NERs recoverable in soil can help give a better understanding of the fate of NERs in soil.

6.
Analyst ; 143(3): 768-776, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29327006

RESUMO

Exposure to environmental insults generally occurs at low levels, making it challenging to measure bacterial responses to such interactions. Additionally, microbial behaviour and phenotype varies in differing bacterial types or growth phases, likely giving rise to growth- or species-specific responses to environmental stimuli. The present study applied a spectrochemical tool, infrared (IR) spectral interrogation coupled with multivariate analysis, to investigate the growth- and species-specific responses of two bacterial strains, Gram-negative Pseudomonas fluorescens and Gram-positive Mycobacterium vanbaalenii, to low concentrations of tetracycline, nanoparticulate silver (AgNP) or mixtures thereof. Results indicate the tendency for tetracycline-induced biospectral alterations to occur in outer-cellular components, e.g., phospholipids or proteins, while AgNPs-induced changes are mainly associated with proteins (∼964 cm-1, ∼1485 cm-1, ∼1550 cm-1, ∼1650 cm-1). The primary altered targets are correlated with bacterial membranes or outer-cellular components. Furthermore, significant lipid changes at 1705-1750 cm-1 were only present in P. fluorescens cells compared to M. vanbaalenii, owing to differences in cell wall structure between Gram-positive and -negative bacteria. This study also found distinct biospectral alterations in non-log phase compared to log phase, confirming bacterial growth-dependent responses to environmental exposures. It implies that previous studies on log phase only may underestimate the impacts from exposures of interest in situ, where bacteria stay in different growth stages. Our work proves the feasibility of biospectroscopy in determining bacterial responses to low-level environmental exposures in a fast and efficient manner, revealing sufficient biochemical information continuously through growth phases. As a nondestructive approach, biospectroscopy may provide deeper insights into the actual and in situ interactions between microbes and environmental stimuli, regardless of the exposure level, growth phase, or bacterial types.


Assuntos
Antibacterianos/farmacologia , Nanopartículas Metálicas , Mycobacterium/efeitos dos fármacos , Pseudomonas fluorescens/efeitos dos fármacos , Prata/farmacologia , Tetraciclina/farmacologia , Exposição Ambiental , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Environ Sci Technol ; 52(21): 12295-12305, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30351040

RESUMO

The environmental and health risks associated with "nonextractable" residues (NERs) of polycyclic aromatic hydrocarbons in soils and their potential for remobilization remain largely unexplored. In this novel study, sequential solvent extractions were employed to interrogate time-dependent remobilization of benzo[a]pyrene (B[a]P) NERs and associated kinetics after re-equilibration (REQ) periods lasting 30 d in four artificially spiked soils aged for up to 200 days. Following sequential extractions of the re-equilibrated soils, remobilization of B[a]P NERs was observed and further confirmed by decreases in the absolute amounts of B[a]P recovered following methanolic saponification after REQ. Remobilization may occur through slow intercompartmental partitioning of more sequestered into less sequestered B[a]P fractions in soils. The amounts of B[a]P remobilized in soils decreased throughout aging following first-order kinetics, and the rates of decrease were slow but 2 to 4 times faster than those of extractable B[a]P before re-equilibration. Sandy-clay-loam soils with large amounts of hard organic carbon exhibited less NER remobilization compared to sandy soils. The amounts of remobilized B[a]P decreased significantly ( p < 0.05) with aging. Specifically, butanol-remobilized B[a]P in soils spiked at 10 mg/kg and 50 mg/kg B[a]P ranged from 0.15 to 0.39 mg/kg and 0.67 to 2.30 mg/kg, respectively, after 200 d of aging.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Benzo(a)pireno , Solo , Microbiologia do Solo
8.
Ecotoxicol Environ Saf ; 147: 594-601, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28923724

RESUMO

When aromatic hydrocarbons are present in contaminated soils, they often occur in mixtures. The impact of four different (3-ring) nitrogen-containing polycyclic aromatic hydrocarbons (N-PAHs) on 12/14C-phenanthrene and 12/14C-benzo[a]pyrene (B[a]P) mineralisation in soil was investigated over a 90 d incubation period. The results revealed that both 12/14C-phenanthrene and 12/14C-benzo[a]pyrene showed no significant mineralisation in soils amended with 10mgkg -1 and 100mgkg -1 N-PAHs (p>0.05). However, increases in lag-phases and decreases in the rates and extents of mineralisation were observed, over time. Among the N-PAHs, benzo[h]quinoline impacted 14C-phenanthrene mineralisation with extended and diauxic lag phases. Furthermore,12/14C-B[a]P and 14C-benzo[a]pyrene-nitrogen-containing polycyclic aromatic hydrocarbons (14C-B[a]P-N-PAHs) amended soils showed extensive lag phases (> 21 d); with some 14C-B[a]P-N-PAH mineralisation recording <1% in both concentrations (10mgkg -1 and 100mgkg -1), over time. This study suggests that the presence of N-PAHs in contaminated soil may impact the microbial degradation of polycyclic aromatic hydrocarbons (PAHs) and the impact was most likely the result of limited success in achieving absolute biodegradation of some PAHs in soil.


Assuntos
Benzo(a)pireno/análise , Nitrogênio/análise , Fenantrenos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Benzo(a)pireno/metabolismo , Biodegradação Ambiental , Monitoramento Ambiental , Fenantrenos/metabolismo , Reino Unido
9.
Anal Chem ; 89(18): 9814-9821, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28809543

RESUMO

Overusage of antibiotics leads to the widespread induction of antibiotic-resistance genes (ARGs). Developing an approach to allow real-time monitoring and fast prediction of ARGs dynamics in clinical or environmental samples has become an urgent matter. Vibrational spectroscopy is potentially an ideal technique toward the characterization of the microbial composition of microbiota as it is nondestructive, high-throughput, and label-free. Herein, we employed attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectroscopy and developed a spectrochemical tool to quantify the static and dynamic composition of kanamycin resistance in artificial microbiota to evaluate microbial antibiotic resistance. Second-order differentiation was introduced in identifying the spectral biomarkers, and principal component analysis followed by linear discriminant analysis (PCA-LDA) was used for the multivariate analysis of the entire spectral features employed. The calculated results of the mathematical dispersion model coupled with PCA-LDA showed high similarity to the designed microbiota structure, with no significant difference (P > 0.05) in the static treatments. Moreover, our model successfully predicted the dynamics of kanamycin resistance within artificial microbiota under kanamycin pressures. This work lends new insights into the potential role of spectrochemical analyses in investigating the existence and trends of antibiotic resistance in microbiota.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Canamicina/farmacologia , Microbiota/efeitos dos fármacos , Modelos Biológicos , Simulação de Dinâmica Molecular , Antibacterianos/química , Análise Discriminante , Canamicina/química , Testes de Sensibilidade Microbiana , Microbiota/genética , Análise Multivariada , Análise de Componente Principal , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Tempo
10.
Environ Sci Technol ; 49(17): 10255-64, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26230485

RESUMO

The bioavailability of organic chemicals in soil and sediment is an important area of scientific investigation for environmental scientists, although this area of study remains only partially recognized by regulators and industries working in the environmental sector. Regulators have recently started to consider bioavailability within retrospective risk assessment frameworks for organic chemicals; by doing so, realistic decision-making with regard to polluted environments can be achieved, rather than relying on the traditional approach of using total-extractable concentrations. However, implementation remains difficult because scientific developments on bioavailability are not always translated into ready-to-use approaches for regulators. Similarly, bioavailability remains largely unexplored within prospective regulatory frameworks that address the approval and regulation of organic chemicals. This article discusses bioavailability concepts and methods, as well as possible pathways for the implementation of bioavailability into risk assessment and regulation; in addition, this article offers a simple, pragmatic and justifiable approach for use within retrospective and prospective risk assessment.


Assuntos
Compostos Orgânicos/química , Disponibilidade Biológica , Medição de Risco , Solo/química , Poluentes do Solo/análise
11.
Appl Environ Microbiol ; 80(2): 618-28, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24212584

RESUMO

Pyrosequencing of the bacterial community associated with a cosmopolitan marine diatom during enrichment with crude oil revealed several Arenibacter phylotypes, of which one (OTU-202) had become significantly enriched by the oil. Since members of the genus Arenibacter have not been previously shown to degrade hydrocarbons, we attempted to isolate a representative strain of this genus in order to directly investigate its hydrocarbon-degrading potential. Based on 16S rRNA sequencing, one isolate (designated strain TG409(T)) exhibited >99% sequence identity to three type strains of this genus. On the basis of phenotypic and genotypic characteristics, strain TG409(T) represents a novel species in the genus Arenibacter, for which the name Arenibacter algicola sp. nov. is proposed. We reveal for the first time that polycyclic aromatic hydrocarbon (PAH) degradation is a shared phenotype among members of this genus, indicating that it could be used as a taxonomic marker for this genus. Kinetic data for PAH mineralization rates showed that naphthalene was preferred to phenanthrene, and its mineralization was significantly enhanced in the presence of glass wool (a surrogate for diatom cell surfaces). During enrichment on hydrocarbons, strain TG409(T) emulsified n-tetradecane and crude oil, and cells were found to be preferentially attached to oil droplets, indicating an ability by the strain to express cell surface amphiphilic substances (biosurfactants or bioemulsifiers) as a possible strategy to increase the bioavailability of hydrocarbons. This work adds to our growing knowledge on the diversity of bacterial genera in the ocean contributing to the degradation of oil contaminants and of hydrocarbon-degrading bacteria found living in association with marine eukaryotic phytoplankton.


Assuntos
Flavobacteriaceae/metabolismo , Filogenia , Fitoplâncton/microbiologia , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes Químicos da Água/metabolismo , Alcanos/metabolismo , Biodegradação Ambiental , Ácidos Graxos/análise , Ácidos Graxos/química , Flavobacteriaceae/genética , Flavobacteriaceae/isolamento & purificação , Dados de Sequência Molecular , Naftalenos/metabolismo , Petróleo/metabolismo , Fenantrenos/metabolismo , RNA Ribossômico 16S
12.
Analyst ; 139(5): 896-905, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24162371

RESUMO

Nanoparticles appear to induce toxic effects through a variety of mechanisms including generation of reactive oxygen species (ROS), physical contact with the cell membrane and indirect catalysis due to remnants from manufacture. The development and subsequent increasing usage of nanomaterials has highlighted a growing need to characterize and assess the toxicity of nanoparticles, particularly those that may have detrimental health effects such as carbon-based nanomaterials (CBNs). Due to interactions of nanoparticles with some reagents, many traditional toxicity tests are unsuitable for use with CBNs. Infrared (IR) spectroscopy is a non-destructive, high throughput technique, which is unhindered by such problems. We explored the application of IR spectroscopy to investigate the effects of CBNs on Gram-negative (Pseudomonas fluorescens) and Gram-positive (Mycobacterium vanbaalenii PYR-1) bacteria. Two types of IR spectroscopy were compared: attenuated total reflection Fourier-transform infrared (ATR-FTIR) and synchrotron radiation-based FTIR (SR-FTIR) spectroscopy. This showed that Gram-positive and Gram-negative bacteria exhibit differing alterations when exposed to CBNs. Gram-positive bacteria appear more resistant to these agents and this may be due to the protection afforded by their more sturdy cell wall. Markers of exposure also vary according to Gram status; Amide II was consistently altered in Gram-negative bacteria and carbohydrate altered in Gram-positive bacteria. ATR-FTIR and SR-FTIR spectroscopy could both be applied to extract biochemical alterations induced by each CBN that were consistent across the two bacterial species; these may represent potential biomarkers of nanoparticle-induced alterations. Vibrational spectroscopy approaches may provide a novel means of fingerprinting the effects of CBNs in target cells.


Assuntos
Bactérias Gram-Negativas/química , Bactérias Gram-Positivas/química , Nanoestruturas/análise , Nanoestruturas/toxicidade , Espectroscopia de Infravermelho com Transformada de Fourier/normas , Síncrotrons/normas , Animais , Bovinos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Soroalbumina Bovina , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Testes de Toxicidade/métodos , Testes de Toxicidade/normas
13.
Microorganisms ; 12(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38543654

RESUMO

The effects of the inoculum (anaerobic digestion effluent) to substrate (simulated food waste) ratio (ISR) 4.00 to 0.25 on putative pathogens and microbial kinetics during batch mesophilic anaerobic digestion were investigated. Red fluorescent protein labelled (RFPAKN132) Escherichia coli JM105 was introduced as a marker species, and together with the indigenous Clostridium sp., Enterococcus sp., Escherichia coli, and total coliforms were used to monitor pathogen death kinetics. Quantitative polymerase chain reaction was also used to estimate the bacterial, fungal, and methanogenic gene copies. All the ISRs eliminated E. coli and other coliforms (4 log10 CFU/mL), but ISR 0.25 achieved this within the shortest time (≤2 days), while ISR 1.00 initially supported pathogen proliferation. Up to 1.5 log10 CFU/mL of Clostridium was reduced by acidogenic conditions (ISR 0.25 and 0.50), while Enterococcus species were resistant to the digestion conditions. Fungal DNA was reduced (≥5 log10 copies/mL) and was undetectable in ISRs 4.00, 2.00, and 0.50 at the end of the incubation period. This study has demonstrated that ISR influenced the pH of the digesters during batch mesophilic anaerobic digestion, and that acidic and alkaline conditions achieved by the lower (0.50 and 0.25) and higher (4.00 and 2.00) ISRs, respectively, were critical to the sanitisation of waste.

14.
Appl Environ Microbiol ; 79(1): 205-14, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23087039

RESUMO

A strictly aerobic, halotolerant, rod-shaped bacterium, designated strain TG408, was isolated from a laboratory culture of the marine diatom Skeletonema costatum (CCAP1077/1C) by enrichment with polycyclic aromatic hydrocarbons (PAHs) as the sole carbon source. 16S rRNA gene sequence analysis placed this organism within the order Xanthomonadales of the class Gammaproteobacteria. Its closest relatives included representatives of the Hydrocarboniphaga-Nevskia-Sinobacter clade (<92% sequence similarity) in the family Sinobacteraceae. The strain exhibited a narrow nutritional spectrum, preferring to utilize aliphatic and aromatic hydrocarbon compounds and small organic acids. Notably, it displayed versatility in degrading two- and three-ring PAHs. Moreover, catechol 2,3-dioxygenase activity was detected in lysates, indicating that this strain utilizes the meta-cleavage pathway for aromatic compound degradation. Cells produced surface blebs and contained a single polar flagellum. The predominant isoprenoid quinone of strain TG408 was Q-8, and the dominant fatty acids were C(16:0), C(16:1) ω7c, and C(18:1) ω7c. The G+C content of the isolate's DNA was 64.3 mol% ± 0.34 mol%. On the basis of distinct phenotypic and genotypic characteristics, strain TG408 represents a novel genus and species in the class Gammaproteobacteria for which the name Polycyclovorans algicola gen. nov., sp. nov., is proposed. Quantitative PCR primers targeting the 16S rRNA gene of this strain were developed and used to show that this organism is found associated with other species of marine phytoplankton. Phytoplankton may be a natural biotope in the ocean where new species of hydrocarbon-degrading bacteria await discovery and which contribute significantly to natural remediation processes.


Assuntos
Gammaproteobacteria/classificação , Gammaproteobacteria/isolamento & purificação , Hidrocarbonetos Aromáticos/metabolismo , Fitoplâncton/microbiologia , Água do Mar/microbiologia , Aerobiose , Composição de Bases , Biotransformação , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Flagelos/fisiologia , Gammaproteobacteria/genética , Gammaproteobacteria/fisiologia , Dados de Sequência Molecular , Filogenia , Quinonas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
15.
Environ Monit Assess ; 185(12): 10039-47, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23793648

RESUMO

Mixtures of polycyclic aromatic hydrocarbons (PAHs) and heavy metals are of major concern in contaminated soil. Biodegradation of PAHs in metal-contaminated soils is complicated because metals are toxic and cannot be degraded by biological processes. This investigation considered the effects of Zn and Cu (50, 100, 500 and 1,000 mg/kg) on (14)C-phenanthrene biodegradation in soil over 60-day contact time. The presence of Zn at all concentrations and low concentrations of Cu (50 and 100 mg/kg) had no significant effect (p > 0.05) on the development of phenanthrene catabolism; however, at higher Cu concentrations, the development of phenanthrene catabolism and bacterial cell numbers were significantly reduced (p < 0.05). This suggests that Cu is more toxic than Zn to soil microbial PAH catabolic activity. Metal/PAH-contaminated soils represent one of the most difficult remedial challenges and insights into PAH biodegradation in the presence of metals is necessary in order to assess the potential for bioremediation.


Assuntos
Metais Pesados/toxicidade , Fenantrenos/metabolismo , Microbiologia do Solo , Poluentes do Solo/toxicidade , Biodegradação Ambiental , Cobre/análise , Cobre/toxicidade , Monitoramento Ambiental , Metabolismo , Metais Pesados/análise , Fenantrenos/análise , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Zinco/análise , Zinco/toxicidade
16.
Chemosphere ; 335: 139095, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37268225

RESUMO

Research investigating the desorptive behaviour of PAHs from contaminated soils often overlooked the effects of source materials, especially coal tar and coal tar pitch and materials alike. In this study, a refined experimental approach was adopted to establish a simple-to-complex continuum of systems that allow the investigation of desorption kinetics of benzo(a)pyrene (BaP) and 3 other carcinogenic PAHs (cPAHs) over an incubation period of 48 d. By comparing the modelled desorption parameters, elucidation of the effects of PAH source materials on their desorptive behaviour was achieved. Desorption of cPAHs from coal tar and pitch was enhanced when they were added to soils, with rapidly desorbing fraction (Frap) of BaP increased from 0.68% for pitch to 1.10% and 2.66% for pitch treated soils, and from 2.57% for coal tar to 6.24% for coal tar treated soil G and 8.76% for coal tar treated sand (1 d). At 1 d, desorption of target cPAHs from solvent and source material spiked soils generally followed the order of solvent > coal tar > pitch. Increases in Frap of cPAHs were observed in coal tar-treated soils after 48 d soil incubation (0.33%-1.16% for soil M, p ≥ 0.05, 6.24%-9.21% for soil G, p < 0.05) and was attributed to the continuous migration of coal tar as a non-aqueous phase liquid (NAPL) into soil pore structures. Slow desorption was dominated by source materials, whereas the extents and rates of rapid desorption (Frap and krap) were more controlled by the quantity of soil organic matter (SOM), rather than quality of SOM (as in solvent-spiked soils). The results of this study challenged the role of PAH source materials as 'sinks' and led to the proposed roles of coal tar and pitch and source materials alike as 'reservoirs' with a risk-driven perspective.


Assuntos
Alcatrão , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Carcinógenos , Alcatrão/química , Cinética , Hidrocarbonetos Policíclicos Aromáticos/análise , Solventes , Solo/química , Poluentes do Solo/análise
17.
Microbiol Res ; 266: 127223, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36228394

RESUMO

In this study, the biodegradation of phenanthrene was investigated in newly isolated endophytic fungal strains, Fusarium sp. (KTS01), Trichoderma harzianum (LAN03), Fusarium oxysporum (KTS02), Fusarium oxysporum (LAN04), and Clonostachys rosea (KTS05). This was performed under different carbon:nitrogen ratios (10:1, 20:1, and 30:1) using different nitrogen sources (urea and malt extract and ammonium nitrate) over a 30 d incubation period in both static and agitated liquid media. The kinetics of polycyclic aromatic hydrocarbons (PAH) mineralisation to CO2 (lag phases, fastest rates, and overall extents) were measured for all of the fungal strains and nutrient conditions using 14C-phenanthrene. All fungal strains were able to biodegrade 14C-phenanthrene to 14CO2 under the different nutrient amendments. However, 14C-phenanthrene mineralisation varied for most of the fungal strains in static and agitated culture conditions. Greater extents of mineralisation were found in fungal cultures (strains KTS05 and KTS01) with C:N ratio of 10:1 in both static and agitated conditions, while the fungal strains (KTS05 and LAN03) showed the greatest phenanthrene mineralisation after N source amendments, particularly with malt extract. In addition, the phenanthrene mineralisation increased with higher C:N ratios for Clonostachys rosea (KTS05) only. Consequently, the results reported here provide a promising potential for the endophytic fungal strains and the importance of nutrients amendments for the enhanced degradation of PAHs contaminated environments.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Nitrogênio , Dióxido de Carbono , Biodegradação Ambiental , Fenantrenos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Extratos Vegetais , Poluentes do Solo/metabolismo
18.
Int J Syst Evol Microbiol ; 62(Pt 11): 2743-2749, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22228670

RESUMO

A strictly aerobic, halotolerant, Gram-stain-negative, rod-shaped bacterium, designated strain DG1253(T), was isolated from a laboratory culture of the marine dinoflagellate Lingulodinium polyedrum (CCAP 1121/2). The strain was able to degrade two- and three-ring polycyclic aromatic hydrocarbons. It exhibited a narrow nutritional spectrum, preferring to utilize aliphatic and aromatic hydrocarbon compounds and small organic acids. Cells produced surface blebs and contained a single polar flagellum. The predominant isoprenoid quinone of strain DG1253(T) was Q-8. The fatty acid profile was dominated by C(18:1)ω7c. The mean DNA G+C content of strain DG1253(T) was 63.6 ± 0.25 mol%. 16S rRNA gene sequence analysis placed this organism within the order Xanthomonadales of the class Gammaproteobacteria. Its closest relatives included representatives of the Hydrocarboniphaga-Nevskia-Sinobacter clade (≤ 89.9% 16S rRNA gene sequence similarity) in the family Sinobacteraceae. On the basis of distinct phenotypic and genotypic characteristics, strain DG1253(T) is considered to represent a novel species of a new genus in the class Gammaproteobacteria, for which the name Algiphilus aromaticivorans gen. nov., sp. nov. is proposed. The type strain of the type species, Algiphilus aromaticivorans, is DG1253(T) (=ATCC BAA-2243(T)=DSM 24793(T)). In addition, a new family, Algiphilaceae fam. nov., is proposed to accommodate the genus Algiphilus.


Assuntos
Dinoflagellida/microbiologia , Gammaproteobacteria/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Dados de Sequência Molecular , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Quinonas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
19.
Environ Sci Technol ; 46(22): 12445-51, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23092507

RESUMO

The observed strong sorption of polycyclic aromatic hydrocarbons (PAHs) to black carbon (BC) presents potential implications for PAH bioaccessibility in soils. The effects of BC on the desorption kinetics and mineralization of phenanthrene in four soils was investigated after 1, 25, 50, and 100 d soil-PAH contact time, using sequential hydroxypropyl-ß-cyclodextrin (HPCD) extractions in soils amended with 0, 0.1, 1, and 5% (dry wt. soil) activated charcoal (AC, a form of BC). The rapidly (%F(rap)) and slowly (%F(slow)) desorbing phenanthrene fractions and their rate constants were determined using a first-order two-compartment (biphasic) desorption model. A minimum 7.8-fold decrease in %F(rap) occurred when AC was increased from 0 to 5%, with a corresponding increase in %F(slow). Desorption rate constants followed the progression k(rap) (% h(-1)) > k(slow) (% h(-1)) and were in the order of 10(-1) to 10(-2) and 10(-3) to 10(-4), respectively. Linear regressions between %F(rap) and the fractions degraded by a phenanthrene-degrading inoculum (%F(min)) indicated that slopes did not approximate 1 at concentrations greater than 0% AC; %F(min) often exceeded %F(rap), indicating a fraction of sorbed phenanthrene (%F(slow)) remained microbially accessible. Therefore, HPCD-desorption kinetics alone may not be an adequate basis for the prediction of the bioaccessibility of PAHs to microorganisms or bioremediation potential in AC-amended soils.


Assuntos
Carvão Vegetal/metabolismo , Poluentes Ambientais/metabolismo , Recuperação e Remediação Ambiental/métodos , Fenantrenos/metabolismo , 2-Hidroxipropil-beta-Ciclodextrina , Biodegradação Ambiental , Relação Dose-Resposta a Droga , Cinética , Modelos Lineares , Pseudomonas/metabolismo , beta-Ciclodextrinas/química
20.
Environ Sci Technol ; 46(10): 5463-70, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22559873

RESUMO

To cope with heterogeneous subsurface environments mycelial microorganisms have developed a unique ramified growth form. By extending hyphae, they can obtain nutrients from remote places and transport them even through air gaps and in small pore spaces, repectively. To date, studies have been focusing on the role that networks play in the distribution of nutrients. Here, we investigated the role of mycelia for the translocation of nonessential substances, using polycyclic aromatic hydrocarbons (PAHs) as model compounds. We show that the hyphae of the mycelial soil oomycete Pythium ultimum function as active translocation vectors for a wide range of PAHs. Visualization by two-photon excitation microscopy (TPEM) demonstrated the uptake and accumulation of phenanthrene (PHE) in lipid vesicles and its active transport by cytoplasmic streaming of the hyphae ('hyphal pipelines'). In mycelial networks, contaminants were translocated over larger distances than by diffusion. Given their transport capacity and ubiquity, hyphae may substantially distribute remote hydrophobic contaminants in soil, thereby improving their bioavailability to bacterial degradation. Hyphal contaminant dispersal may provide an untapped potential for future bioremediation approaches.


Assuntos
Micélio/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Pythium/metabolismo , Biodegradação Ambiental , Transporte Biológico Ativo , Microscopia de Fluorescência por Excitação Multifotônica , Fenantrenos/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA