RESUMO
The constraints of minute reactant amounts and the impossibility to remove any undesired surface-bound products during monolayer functionalization of a surface necessitate the selection of efficient, modular and orthogonal reactions that lead to quantitative conversions. Herein, we explore the character of sulfur-fluoride exchange (SuFEx) reactions on a surface, and explore the applicability for quantitative and orthogonal surface functionalization. To this end, we demonstrate the use of ethenesulfonyl fluoride (ESF) as an efficient SuFEx linker for creating "SuFEx-able" monolayer surfaces, enabling three distinct approaches to utilize SuFEx chemistry on a surface. The first approach relies on a di-SuFEx loading allowing dual functionalization with a nucleophile, while the two latter approaches focus on dual (CuAAC-SuFEx/SPOCQ-SuFEx) click platforms. The resultant strategies allow facile attachment of two different substrates sequentially on the same platform. Along the way we also demonstrate the Michael addition of ethenesulfonyl fluoride to be a quantitative surface-bound reaction, indicating significant promise in materials science for this reaction.
RESUMO
Novel click reactions are of continued interest in fields as diverse as bio-conjugation, polymer science and surface chemistry. Qualification as a proper "click" reaction requires stringent criteria, including fast kinetics and high conversion, to be met. Herein, we report a novel strain-promoted cycloaddition between cyclopropenes and o-quinones in solution and on a surface. We demonstrate the "click character" of the reaction in solution and on surfaces for both monolayer and polymer brush functionalization.
RESUMO
Rapid and quantitative click functionalization of surfaces remains an interesting challenge in surface chemistry. In this regard, inverse electron demand Diels-Alder (IEDDA) reactions represent a promising metal-free candidate. Herein, we reveal quantitative surface functionalization within 15â min. Furthermore, we report the comprehensive effects of substrate stereochemistry, surrounding microenvironment and substrate order on the reaction kinetics as obtained by surface-bound mass spectrometry (DART-HRMS).
RESUMO
While the mechanistic details of the dimerization of the self-complementary 2-ureido-4(1H)-pyrimidinone (UPy) motif are well studied in solution, no such investigation is available on a surface. Here we report an extensive study of hydrogen binding kinetics for quadruply H-bonded UPy arrays on aluminum surfaces and explore the ON/OFF capability of such arrays under externally controllable conditions. Also, we investigate the dynamic nature of this system whereby the interfacially H-bonded UPy is displaced by another UPy derivative in solution, and reveal the kinetics of the exchange process.
RESUMO
Strain-promoted oxidation-controlled cyclooctyne-1,2-quinone cycloaddition (SPOCQ) between functionalized bicyclo[6.1.0]non-4-yne (BCN) and surface-bound quinones revealed an unprecedented 100 % conjugation efficiency. In addition, monitoring by direct analysis in real time mass spectrometry (DART-MS) revealed the underlying kinetics and activation parameters of this immobilization process in dependence on its microenvironment.
RESUMO
Mica is the substrate of choice for microscopic visualization of a wide variety of intricate nanostructures. Unfortunately, the lack of a facile strategy for its modification has prevented the on-mica assembly of nanostructures. Herein, we disclose a convenient catechol-based linker that enables various surface-bound metal-free click reactions, and an easy modification of mica with DNA nanostructures and a horseradish peroxidase mimicking hemin/G-quadruplex DNAzyme.
RESUMO
In contrast to homogeneous systems, studying the kinetics of organic reactions on solid surfaces remains a difficult task due to the limited availability of appropriate analysis techniques that are general, high-throughput, and capable of offering quantitative, structural surface information. Here, we demonstrate how direct analysis in real time mass spectrometry (DART-MS) complies with above considerations and can be used for determining interfacial kinetic parameters. The presented approach is based on the use of a MS tag that--in principle--allows application to other reactions. To show the potential of DART-MS, we selected the widely applied strain-promoted alkyne-azide cycloaddition (SPAAC) as a model reaction to elucidate the effects of the nanoenvironment on the interfacial reaction rate.
RESUMO
The ability to locally functionalize the surface of glass allows for myriad biomedical and chemical applications. This would be the case if the surface functionalization can be induced using light with wavelengths for which standard glass is almost transparent. To this aim, we present the first example of a photochemical modification of hydrogen-terminated glass (H-glass) with terminal alkenes. Both flat glass surfaces and the inside of glass microchannels were modified with a well-defined, covalently attached organic monolayer using a range of wavelengths, including sub-band-gap 302 nm ultraviolet light. A detailed characterization thereof was conducted by measurements of the static water contact angle, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and scanning Auger microscopy (SAM). Germanium attenuated total reflection Fourier transform infrared (GATR-FTIR) indicates that the mechanism of the surface modification proceeds via an anti-Markovnikov substitution. Reacting H-glass with 10-trifluoro-acetamide-1-decene (TFAAD) followed by basic hydrolysis affords the corresponding primary amine-terminated monolayer, enabling additional functionalization of the substrate. Furthermore, we show the successful formation of a photopatterned amine layer by the specific attachment of fluorescent nanoparticles in very discrete regions. Finally, a microchannel was photochemically patterned with a functional linker allowing for surface-directed liquid flow. These results demonstrate that H-glass can be modified with a functional tailor-made organic monolayer, has highly tunable wetting properties, and displays significant potential for further applications.