Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30281472

RESUMO

The significance of metabolic pathway prediction is to envision the viable unknown transformations that can occur provided the appropriate enzymes are present. It can facilitate the prediction of the consequences of host-pathogen interactions. In this article, we have proposed a new algorithm Architectural Similarity-based Automated Pathway Prediction (ASAPP) to predict metabolic pathways based on the structural similarity among the metabolites. ASAPP takes two-dimensional structure and molecular weight of metabolites as input, and generates a list of probable transformations without the knowledge of any externally established reactions, with an accuracy of 85.09 percent. ASAPP has also been applied to predict the outcome of pathogen liberated toxins on the carbohydrate and lipid pathways of the hosts. We have analyzed the disruption of host pathways in the presence of toxins, and have found that some metabolites in Glycolysis and the TCA cycle have a high chance of being the breakpoints in the pathway. The tool is available at http://asapp.droppages.com/.


Assuntos
Biologia Computacional/métodos , Interações Hospedeiro-Patógeno , Redes e Vias Metabólicas , Software , Algoritmos , Animais , Simulação por Computador , Humanos , Toxinas Biológicas
2.
Comput Biol Med ; 112: 103374, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31419629

RESUMO

BACKGROUND: Effector proteins of bacteria infect their hosts by specific dedicated machinery identified as secretion systems. Currently, no mechanism to identify the effector proteins based on their 3D structure has been reported in the literature. In order to identify effector proteins, extraction of features from their 3D structure is crucial. However, effector protein datasets are highly imbalanced. State-of-the-art oversampling algorithms are incapable of dealing with such datasets. They usually eliminate samples as noise. They do not ensure generation of synthetic samples strictly in the vicinity of the minority class samples. In effector protein datasets, deletion of any samples as noise would lead to loss of crucial information. Furthermore, generation of synthetic samples of the minority class in the vicinity of majority class samples would lead to an inept classifier. METHOD: In this paper, we introduce an algorithm called Cluster Quality based Non-Reductional (CQNR) oversampling technique. Its novelty lies in generating new samples proportional to the distribution of samples of the minority classes, without eliminating any sample as noise. Utilizing CQNR, we develop a novel Effector Protein Predictor based on the 3D (EPP3D) structure of proteins. EPP3D is trained on a feature set, balanced by CQNR, comprising 3D structure-based features, namely, convex hull layer count, surface atom composition, radius of gyration, packing density and compactness, derived from the 3D structure of the experimentally verified effector proteins. RESULT: Fscore and Gmean demonstrate that CQNR has outperformed some well-established oversampling methods by approximately 3-5%, with respect to classification accuracy, on five benchmark datasets and three other highly imbalanced synthetically generated datasets. Likewise, for classification of pathogenic effector proteins, a significant improvement of 7-9% in accuracy has been noticed, on the application of CQNR followed by EPP3D. Moreover, EPP3D has exhibited an improvement of 2-4% in classifying effector proteins based on their 3D structure compared to the classification of effector proteins based on their amino acid sequences. The software for CQNR and EPP3D are available at http://projectphd.droppages.com/CQNR.html.


Assuntos
Algoritmos , Proteínas de Bactérias/química , Bacteroides/química , Bases de Dados de Proteínas , Listeria/química , Modelos Moleculares , Domínios Proteicos
3.
J Bioinform Comput Biol ; 17(3): 1950019, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31288641

RESUMO

Prediction of effector proteins is of paramount importance due to their crucial role as first-line invaders while establishing a pathogen-host interaction, often leading to infection of the host. Prediction of T6 effector proteins is a new challenge since the discovery of T6 Secretion System and the unique nature of the particular secretion system. In this paper, we have first designed a Python-based standalone tool, called PyPredT6, to predict T6 effector proteins. A total of 873 unique features has been extracted from the peptide and nucleotide sequences of the experimentally verified effector proteins. Based on these features and using machine learning algorithms, we have performed in silico prediction of T6 effector proteins in Vibrio cholerae and Yersinia pestis to establish the applicability of PyPredT6. PyPredT6 is available at http://projectphd.droppages.com/PyPredT6.html .


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Linguagens de Programação , Software , Algoritmos , Biologia Computacional/métodos , Interações Hospedeiro-Patógeno , Aprendizado de Máquina , Vibrio cholerae/metabolismo , Vibrio cholerae/patogenicidade , Yersinia pestis/metabolismo , Yersinia pestis/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA