Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Cutan Pathol ; 49(8): 743-746, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35362105

RESUMO

Nodular fasciitis (NF) is a myofibroblastic proliferation that is uncommonly present in pediatric patients. These benign neoplasms can masquerade as more insidious sarcomatous proliferations on both clinical exam and initial histopathologic review, often prompting undue concern in patients, parents, and providers. While immunohistochemical analysis of NF can be variable, adding to the diagnostic uncertainty, molecular analysis documenting ubiquitin-specific protease 6 (USP6) gene rearrangement can help confirm the diagnosis as an association between NF and USP6 overexpression was first identified 10 years ago in an analysis that found rearrangements of the involved locus in over 90% of studied samples. In this report, we review one case of NF located on the chin of a nine-year-old girl in which molecular testing was essential to secure the correct diagnosis, and provide a summary of documented cases of USP6 overexpression in transient pediatric neoplasms.


Assuntos
Fasciite , Fibroma , Criança , Aberrações Cromossômicas , Fasciite/genética , Fasciite/patologia , Feminino , Fibroma/genética , Rearranjo Gênico , Humanos , Hibridização in Situ Fluorescente , Proteínas Proto-Oncogênicas/genética , Ubiquitina Tiolesterase/genética
4.
Dev Biol ; 385(2): 179-88, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24309208

RESUMO

Broad dermal Wnt signaling is required for patterned induction of hair follicle placodes and subsequent Wnt signaling in placode stem cells is essential for induction of dermal condensates, cell clusters of precursors for the hair follicle dermal papilla (DP). Progression of hair follicle formation then requires coordinated signal exchange between dermal condensates and placode stem cells. However, it remains unknown whether continued Wnt signaling in DP precursor cells plays a role in this process, largely due to the long-standing inability to specifically target dermal condensates for gene ablation. Here we use the Tbx18(Cre) knockin mouse line to ablate the Wnt-responsive transcription factor ß-catenin specifically in these cells at E14.5 during the first wave of guard hair follicle formation. In the absence of ß-catenin, canonical Wnt signaling is effectively abolished in these cells. Sox2(+) dermal condensates initiate normally; however by E16.5 guard hair follicle numbers are strongly reduced and by E18.5 most whiskers and guard hair follicles are absent, suggesting that active Wnt signaling in dermal condensates is important for hair follicle formation to proceed after induction. To explore the molecular mechanisms by which Wnt signaling in dermal condensates regulates hair follicle formation, we analyze genome-wide the gene expression changes in embryonic ß-catenin null DP precursor cells. We find altered expression of several signaling pathway genes, including Fgfs and Activin, both previously implicated in hair follicle formation. In summary, these data reveal a functional role of Wnt signaling in DP precursors for embryonic hair follicle formation and identify Fgf and Activin signaling as potential effectors of Wnt signaling-regulated events.


Assuntos
Cabelo/crescimento & desenvolvimento , Transdução de Sinais , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Camundongos , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real
5.
Exp Dermatol ; 24(6): 468-70, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25708924

RESUMO

Embryonic hair follicle (HF) induction and formation is dependent on signalling crosstalk between the dermis and specialized dermal condensates on the mesenchymal side and epidermal cells and incipient placodes on the epithelial side, but the precise nature and succession of signals remain unclear. Platelet-derived growth factor (PDGF) signalling is involved in the development of several organs and the maintenance of adult tissues, including HF regeneration in the hair cycle. As both PDGF receptors, PDGFRα and PDGFRß, are expressed in embryonic dermis and dermal condensates, we explored in this study the role of PDGF signalling in HF induction and formation in the developing skin mesenchyme. We conditionally ablated both PDGF receptors with Tbx18(Cre) in early dermal condensates before follicle formation, and with Prx1-Cre broadly in the ventral dermis prior to HF induction. In both PDGFR double mutants, HF induction and formation ensued normally, and the pattern of HF formation and HF numbers were unaffected. These data demonstrate that mesenchymal PDGF signalling, either in the specialized niche or broadly in the dermis, is dispensable for HF induction and formation.


Assuntos
Derme/embriologia , Folículo Piloso/embriologia , Morfogênese/fisiologia , Fator de Crescimento Derivado de Plaquetas/fisiologia , Transdução de Sinais/fisiologia , Animais , Derme/citologia , Derme/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Folículo Piloso/citologia , Folículo Piloso/fisiologia , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/fisiologia , Camundongos , Camundongos Mutantes , Modelos Animais , Morfogênese/genética , Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/fisiologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/fisiologia , Transdução de Sinais/genética
6.
Semin Cell Dev Biol ; 23(8): 917-27, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22960356

RESUMO

Embryonic hair follicle induction and formation are regulated by mesenchymal-epithelial interactions between specialized dermal cells and epidermal stem cells that switch to a hair fate. Similarly, during postnatal hair growth, communication between mesenchymal dermal papilla cells and surrounding epithelial matrix cells coordinates hair shaft production. Adult hair follicle regeneration in the hair cycle again is thought to be controlled by activating signals originating from the mesenchymal compartment and acting on hair follicle stem cells. Although many signaling pathways are implicated in hair follicle formation and growth, the precise nature, timing, and intersection of these inductive and regulatory signals remains elusive. The goal of this review is to summarize our current understanding and to discuss recent new insights into mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling.


Assuntos
Ciclo Celular , Transição Epitelial-Mesenquimal , Folículo Piloso/citologia , Morfogênese , Animais , Comunicação Celular , Folículo Piloso/embriologia , Folículo Piloso/metabolismo , Humanos , Transdução de Sinais
7.
Exp Dermatol ; 23(10): 748-50, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25066162

RESUMO

Hair follicle (HF) morphogenesis relies on the coordinated exchange of signals between mesenchymal and epithelial compartments of embryonic skin. Chemokine receptor Cxcr4 expression was recently identified in dermal condensates (DCs) of nascent HFs, but its role in promoting HF morphogenesis remains unknown. Our analyses confirmed Cxcr4 expression in condensate cells, and additionally revealed transient Cxcr4 expression in incipient epithelial hair placodes. Placodal Cxcr4 appeared prior to detection in DCs, representing a switch of expression between epithelial and mesenchymal compartments. To explore the functional role of this receptor in both compartments for early HF formation, we conditionally ablated Cxcr4 with condensate-targeting Tbx18(cre) knock-in and epidermis-targeting Krt14-cre transgenic mice. Conditional knockouts for both crosses were viable throughout embryogenesis and into adulthood. Morphological and biochemical marker analyses revealed comparable numbers of HFs forming in knockout embryos compared to wild-type littermate controls in both cases, suggesting that neither dermal nor epithelial Cxcr4 expression is required for early HF morphogenesis. We conclude that Cxcr4 expression and chemokine signaling through this receptor in embryonic mouse skin is dispensable for HF formation.


Assuntos
Folículo Piloso/embriologia , Folículo Piloso/metabolismo , Receptores CXCR4/metabolismo , Animais , Epitélio/embriologia , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Morfogênese , Receptores CXCR4/deficiência , Receptores CXCR4/genética , Transdução de Sinais
8.
Nature ; 455(7215): 930-5, 2008 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-18724359

RESUMO

Neuroblastoma is a childhood cancer that can be inherited, but the genetic aetiology is largely unknown. Here we show that germline mutations in the anaplastic lymphoma kinase (ALK) gene explain most hereditary neuroblastomas, and that activating mutations can also be somatically acquired. We first identified a significant linkage signal at chromosome bands 2p23-24 using a whole-genome scan in neuroblastoma pedigrees. Resequencing of regional candidate genes identified three separate germline missense mutations in the tyrosine kinase domain of ALK that segregated with the disease in eight separate families. Resequencing in 194 high-risk neuroblastoma samples showed somatically acquired mutations in the tyrosine kinase domain in 12.4% of samples. Nine of the ten mutations map to critical regions of the kinase domain and were predicted, with high probability, to be oncogenic drivers. Mutations resulted in constitutive phosphorylation, and targeted knockdown of ALK messenger RNA resulted in profound inhibition of growth in all cell lines harbouring mutant or amplified ALK, as well as in two out of six wild-type cell lines for ALK. Our results demonstrate that heritable mutations of ALK are the main cause of familial neuroblastoma, and that germline or acquired activation of this cell-surface kinase is a tractable therapeutic target for this lethal paediatric malignancy.


Assuntos
Predisposição Genética para Doença/genética , Mutação/genética , Neuroblastoma/enzimologia , Neuroblastoma/genética , Proteínas Tirosina Quinases/genética , Quinase do Linfoma Anaplásico , Sequência de Bases , Linhagem Celular Tumoral , Criança , Cromossomos Humanos Par 2/genética , Feminino , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Linhagem , Fosforilação , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/deficiência , Receptores Proteína Tirosina Quinases
9.
Proc Natl Acad Sci U S A ; 108(8): 3336-41, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21289283

RESUMO

Neuroblastoma is a childhood cancer that is often fatal despite intense multimodality therapy. In an effort to identify therapeutic targets for this disease, we performed a comprehensive loss-of-function screen of the protein kinome. Thirty kinases showed significant cellular cytotoxicity when depleted, with loss of the cell cycle checkpoint kinase 1 (CHK1/CHEK1) being the most potent. CHK1 mRNA expression was higher in MYC-Neuroblastoma-related (MYCN)-amplified (P < 0.0001) and high-risk (P = 0.03) tumors. Western blotting revealed that CHK1 was constitutively phosphorylated at the ataxia telangiectasia response kinase target site Ser345 and the autophosphorylation site Ser296 in neuroblastoma cell lines. This pattern was also seen in six of eight high-risk primary tumors but not in control nonneuroblastoma cell lines or in seven of eight low-risk primary tumors. Neuroblastoma cells were sensitive to the two CHK1 inhibitors SB21807 and TCS2312, with median IC(50) values of 564 nM and 548 nM, respectively. In contrast, the control lines had high micromolar IC(50) values, indicating a strong correlation between CHK1 phosphorylation and CHK1 inhibitor sensitivity (P = 0.0004). Furthermore, cell cycle analysis revealed that CHK1 inhibition in neuroblastoma cells caused apoptosis during S-phase, consistent with its role in replication fork progression. CHK1 inhibitor sensitivity correlated with total MYC(N) protein levels, and inducing MYCN in retinal pigmented epithelial cells resulted in CHK1 phosphorylation, which caused growth inhibition when inhibited. These data show the power of a functional RNAi screen to identify tractable therapeutical targets in neuroblastoma and support CHK1 inhibition strategies in this disease.


Assuntos
Neuroblastoma/tratamento farmacológico , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , RNA Interferente Pequeno/farmacologia , Apoptose/efeitos dos fármacos , Quinase 1 do Ponto de Checagem , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Humanos , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/patologia , Proteínas Nucleares/análise , Proteínas Oncogênicas/análise , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro , Fase S/efeitos dos fármacos
10.
Cureus ; 13(8): e16836, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36159953

RESUMO

Two patients with longstanding vitiligo presented with repigmentation in sun-exposed areas as a previously unreported phenomenon coinciding with initiating loop diuretic therapy. Loop diuretics antagonize Na-K-Cl cotransporters and have been associated with a variety of cutaneous adverse effects, such as bullous pemphigoid and photosensitivity, but have yet to be cited as drugs associated with vitiligo repigmentation. This report explores the direct and indirect influence loop diuretics may have on inducing pigmentation changes.

11.
Cureus ; 12(4): e7562, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32382464

RESUMO

Cutaneous sclerosis occurs in association with a variety of systemic diseases, including hematologic malignancy, plasma cell dyscrasias, solid organ tumors, and other systemic autoimmune conditions. Herein, we present a unique case of morphea/lichen sclerosus overlap arising in association with aplastic anemia. To expand upon this rare case, we also review the literature surrounding paraneoplastic sclerosing skin disorders. A 53-year-old man presented with a 13-month history of progressive and generalized skin changes. Exam revealed irregular, hypopigmented indurated plaques with focal areas of scale on the bilateral axillae and hips, as well as hyperpigmented brown papules and plaques on the back. Laboratory evaluation revealed pancytopenia and positive anti-nuclear antibody (1:160). Bone marrow biopsy demonstrated hypocellular marrow consistent with aplastic anemia. Furthermore, skin biopsies revealed lichen sclerosus overlying superficial morphea, consistent with a paraneoplastic sclerodermoid-like eruption. While preparations for hematologic-directed therapies were made, skin-directed therapy with a combination topical steroids and topical calcineurin inhibitors was initiated. Eosinophilic fasciitis and scleroderma have been linked to aplastic anemia, and herein, we expand upon this phenomenon by presenting our case of generalized plaque morphea/lichen sclerosus overlap arising in the setting of aplastic anemia. Dermatologists must be aware of this rare association in order to identify precocious hematologic disease.

12.
Int J Womens Dermatol ; 6(4): 311-317, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33015293

RESUMO

BACKGROUND: Hematopoietic stem cell transplant is a crucial intervention to definitively treat many hematopoietic malignancies, but it carries great risks of morbidity and mortality often associated with graft-versus-host disease (GVHD). Acute and chronic GVHD are distinct entities, defined by a combination of historical, clinical, and pathologic data, but both are generally thought to stem from self-propagating aberrantly activated immune cells inflicting end organ damage, with the potential to cause significant illness or even death. Event-free survival rates after hematopoietic stem cell transplant continue to improve each year, but GVHD remains a major hurdle in improving the efficacy and safety of transplant. OBJECTIVE: Recent studies demonstrating tissue-specific immune effector phenotypes underscore the need for a deeper understanding of the cellular and molecular pathways driving the destruction of target tissues in patients with acute GVHD. METHODS: Samples were collected from lesional and unaffected skin in five patients with acute cutaneous GHVD. Fresh tissue was processed for fluorescence-activated cell sorting and analysis of macrophages and lymphocytes. RESULTS: The percentage of lymphocytes and macrophages as a representation of total cells varied among patients and was not always consistent between lesional and unaffected sites. The heterogeneity in immune cell profiling observed in patients in this study could reflect the diverse demographics, conditioning, and transplant conditions of each individual. CONCLUSION: This study provides initial insight into the underlying molecular mechanisms of cutaneous GVHD progression and paves the way for additional studies to examine the cellular and molecular landscape in greater detail.

13.
Science ; 367(6474): 161-166, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31857493

RESUMO

Tissue homeostasis requires the balance of growth by cell production and regression through cell loss. In the hair cycle, during follicle regression, the niche traverses the skin through an unknown mechanism to reach the stem cell reservoir and trigger new growth. Here, we identify the dermal sheath that lines the follicle as the key driver of tissue regression and niche relocation through the smooth muscle contractile machinery that generates centripetal constriction force. We reveal that the calcium-calmodulin-myosin light chain kinase pathway controls sheath contraction. When this pathway is blocked, sheath contraction is inhibited, impeding follicle regression and niche relocation. Thus, our study identifies the dermal sheath as smooth muscle that drives follicle regression for reuniting niche and stem cells in order to regenerate tissue structure during homeostasis.


Assuntos
Derme/fisiologia , Folículo Piloso/fisiologia , Músculo Liso/fisiologia , Regeneração , Nicho de Células-Tronco/fisiologia , Agrecanas/genética , Animais , Humanos , Camundongos , Camundongos Mutantes , Contração Muscular
14.
JAMA Dermatol ; 160(3): 363-366, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117485

RESUMO

This case report describes a woman in her 30s who presented with a 3-year history of anti­PL-12 antisynthetase syndrome characterized by interstitial lung disease, arthritis, and myositis and was diagnosed with antisynthetase syndrome­associated panniculitis.


Assuntos
Miosite , Nitrilas , Paniculite , Pirazóis , Pirimidinas , Humanos , Miosite/diagnóstico , Miosite/tratamento farmacológico , Anticorpos Antinucleares , Paniculite/diagnóstico , Paniculite/tratamento farmacológico , Genes Codificadores dos Receptores de Linfócitos T , Autoanticorpos
15.
Dev Cell ; 48(1): 32-48.e5, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30595537

RESUMO

Cell fate transitions are essential for specification of stem cells and their niches, but the precise timing and sequence of molecular events during embryonic development are largely unknown. Here, we identify, with 3D and 4D microscopy, unclustered precursors of dermal condensates (DC), signaling niches for epithelial progenitors in hair placodes. With population-based and single-cell transcriptomics, we define a molecular time-lapse from pre-DC fate specification through DC niche formation and establish the developmental trajectory as the DC lineage emerges from fibroblasts. Co-expression of downregulated fibroblast and upregulated DC genes in niche precursors reveals a transitory molecular state following a proliferation shutdown. Waves of transcription factor and signaling molecule expression then coincide with DC formation. Finally, ablation of epidermal Wnt signaling and placode-derived FGF20 demonstrates their requirement for pre-DC specification. These findings uncover a progenitor-dependent niche precursor fate and the transitory molecular events controlling niche formation and function.


Assuntos
Diferenciação Celular/fisiologia , Derme/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Folículo Piloso/metabolismo , Animais , Fibroblastos/citologia , Folículo Piloso/embriologia , Transdução de Sinais/genética , Pele/metabolismo , Células-Tronco/citologia
17.
Cell Rep ; 14(12): 3001-18, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-27009580

RESUMO

The hair follicle (HF) is a complex miniorgan that serves as an ideal model system to study stem cell (SC) interactions with the niche during growth and regeneration. Dermal papilla (DP) cells are required for SC activation during the adult hair cycle, but signal exchange between niche and SC precursors/transit-amplifying cell (TAC) progenitors that regulates HF morphogenetic growth is largely unknown. Here we use six transgenic reporters to isolate 14 major skin and HF cell populations. With next-generation RNA sequencing, we characterize their transcriptomes and define unique molecular signatures. SC precursors, TACs, and the DP niche express a plethora of ligands and receptors. Signaling interaction network analysis reveals a bird's-eye view of pathways implicated in epithelial-mesenchymal interactions. Using a systematic tissue-wide approach, this work provides a comprehensive platform, linked to an interactive online database, to identify and further explore the SC/TAC/niche crosstalk regulating HF growth.


Assuntos
Folículo Piloso/metabolismo , Pele/metabolismo , Células-Tronco/citologia , Animais , Citometria de Fluxo , Queratina-14/genética , Queratina-14/metabolismo , Camundongos , Microscopia de Fluorescência , Análise de Componente Principal , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Análise de Sequência de RNA , Transdução de Sinais/genética , Pele/citologia , Nicho de Células-Tronco , Células-Tronco/metabolismo , Transcriptoma
18.
Dev Cell ; 34(5): 577-91, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26256211

RESUMO

Defining the unique molecular features of progenitors and their niche requires a genome-wide, whole-tissue approach with cellular resolution. Here, we co-isolate embryonic hair follicle (HF) placode and dermal condensate cells, precursors of adult HF stem cells and the dermal papilla/sheath niche, along with lineage-related keratinocytes and fibroblasts, Schwann cells, melanocytes, and a population inclusive of all remaining skin cells. With next-generation RNA sequencing, we define gene expression patterns in the context of the entire embryonic skin, and through transcriptome cross-comparisons, we uncover hundreds of enriched genes in cell-type-specific signatures. Axon guidance signaling and many other pathway genes are enriched in multiple signatures, implicating these factors in driving the large-scale cellular rearrangements necessary for HF formation. Finally, we share all data in an interactive, searchable companion website. Our study provides an overarching view of signaling within the entire embryonic skin and captures a molecular snapshot of HF progenitors and their niche.


Assuntos
Folículo Piloso/citologia , Folículo Piloso/embriologia , Queratinócitos/citologia , Pele/metabolismo , Células-Tronco/citologia , Transcriptoma/fisiologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Camundongos , Organogênese/fisiologia , Transdução de Sinais/fisiologia , Pele/citologia , Pele/embriologia , Nicho de Células-Tronco
19.
Curr Top Dev Biol ; 107: 333-72, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24439812

RESUMO

As stem cells (SCs) in adult organs continue to be identified and characterized, it becomes clear that their survival, quiescence, and activation depend on specific signals in their microenvironment, or niche. Although adult SCs of diverse tissues differ by their developmental origin, cycling activity, and regenerative capacity, there appear to be conserved similarities regarding the cellular and molecular components of the SC niche. Interestingly, many organs house both slow-cycling and fast-cycling SC populations, which rely on the coexistence of quiescent and inductive niches for proper regulation. In this review we present a general definition of adult SC niches in the most studied mammalian systems. We further focus on dissecting their cellular organization and on highlighting recently identified key molecular regulators. Finally, we detail the potential involvement of the SC niche in tissue degeneration, with a particular emphasis on aging and cancer.


Assuntos
Células-Tronco Adultas/fisiologia , Envelhecimento/fisiologia , Comunicação Autócrina/fisiologia , Microambiente Celular/fisiologia , Modelos Biológicos , Neoplasias/fisiopatologia , Transdução de Sinais/fisiologia , Adulto , Matriz Extracelular/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Músculos/citologia , Tecido Nervoso/citologia , Espermatogônias/citologia
20.
Nat Commun ; 5: 4511, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25077433

RESUMO

Although the principles that balance stem cell self-renewal and differentiation in normal tissue homeostasis are beginning to emerge, it is still unclear whether cancer cells with tumour initiating potential are similarly governed, or whether they have acquired distinct mechanisms to sustain self-renewal and long-term tumour growth. Here we show that the transcription factor Sox2, which is not expressed in normal skin epithelium and is dispensable for epidermal homeostasis, marks tumour initiating cells (TICs) in cutaneous squamous cell carcinomas (SCCs). We demonstrate that Sox2 is required for SCC growth in mouse and human, where it enhances Nrp1/Vegf signalling to promote the expansion of TICs along the tumour-stroma interface. Our findings suggest that distinct transcriptional programmes govern self-renewal and long-term growth of TICs and normal skin epithelial stem and progenitor cells. These programmes present promising diagnostic markers and targets for cancer-specific therapies.


Assuntos
Carcinoma de Células Escamosas/genética , Células-Tronco Neoplásicas/metabolismo , Neuropilina-1/genética , Fatores de Transcrição SOXB1/genética , Neoplasias Cutâneas/genética , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Células-Tronco Neoplásicas/patologia , Neuropilina-1/antagonistas & inibidores , Neuropilina-1/metabolismo , Especificidade de Órgãos , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição SOXB1/antagonistas & inibidores , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais , Pele/metabolismo , Pele/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia , Transcrição Gênica , Microambiente Tumoral/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA