Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Cancer ; 23(1): 189, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36843111

RESUMO

BACKGROUND: Pancreatic adenocarcinoma (PDAC) persists as a malignancy with high morbidity and mortality that can benefit from new means to characterize and detect these tumors, such as radiogenomics. In order to address this gap in the literature, constructed a transcriptomic-CT radiogenomic (RG) map for PDAC. METHODS: In this Institutional Review Board approved study, a cohort of subjects (n = 50) with gene expression profile data paired with histopathologically confirmed resectable or borderline resectable PDAC were identified. Studies with pre-operative contrast-enhanced CT images were independently assessed for a set of 88 predefined imaging features. Microarray gene expression profiling was then carried out on the histopathologically confirmed pancreatic adenocarcinomas and gene networks were constructed using Weighted Gene Correlation Network Analysis (WCGNA) (n = 37). Data were analyzed with bioinformatics analyses, multivariate regression-based methods, and Kaplan-Meier survival analyses. RESULTS: Survival analyses identified multiple features of interest that were significantly associated with overall survival, including Tumor Height (P = 0.014), Tumor Contour (P = 0.033), Tumor-stroma Interface (P = 0.014), and the Tumor Enhancement Ratio (P = 0.047). Gene networks for these imaging features were then constructed using WCGNA and further annotated according to the Gene Ontology (GO) annotation framework for a biologically coherent interpretation of the imaging trait-associated gene networks, ultimately resulting in a PDAC RG CT-transcriptome map composed of 3 stage-independent imaging traits enriched in metabolic processes, telomerase activity, and podosome assembly (P < 0.05). CONCLUSIONS: A CT-transcriptomic RG map for PDAC composed of semantic and quantitative traits with associated biology processes predictive of overall survival, was constructed, that serves as a reference for further mechanistic studies for non-invasive phenotyping of pancreatic tumors.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/genética , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/genética , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/genética , Perfilação da Expressão Gênica/métodos , Prognóstico , Neoplasias Pancreáticas
2.
Sci Rep ; 12(1): 15794, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138084

RESUMO

Multiple studies have created state-of-the-art liver segmentation models using Deep Convolutional Neural Networks (DCNNs) such as the V-net and H-DenseUnet. Oversegmentation however continues to be a problem. We set forth to address these limitations by developing a an automated workflow that leverages the strengths of different DCNN architectures, resulting in a pipeline that enables fully automated liver segmentation. A Pipeline for Automated Deep Learning Liver Segmentation (PADLLS) was developed and implemented that cascades multiple DCNNs that were trained on more than 200 CT scans. First, a V-net is used to create a rough liver, spleen, and stomach mask. After stomach and spleen pixels are removed using their respective masks and ascites is removed using a morphological algorithm, the scan is passed to a H-DenseUnet to yield the final segmentation. The segmentation accuracy of the pipleline was compared to the H-DenseUnet and the V-net using the SLIVER07 and 3DIRCADb datasets as benchmarks. The PADLLS Dice score for the SLIVER07 dataset was calculated to be 0.957 ± 0.033 and was significantly better than the H-DenseUnet's score of 0.927 ± 0.044 (p = 0.0219) and the V-net's score of 0.872 ± 0.121 (p = 0.0067). The PADLLS Dice score for the 3DIRCADb dataset was 0.965 ± 0.016 and was significantly better than the H-DenseUnet's score of 0.930 ± 0.041 (p = 0.0014) the V-net's score of 0.874 ± 0.060 (p < 0.001). In conclusion, our pipeline (PADLLS) outperforms existing liver segmentation models, serves as a valuable tool for image-based analysis, and is freely available for download and use.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Fígado/diagnóstico por imagem , Redes Neurais de Computação , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA