Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 216(Pt 3): 114653, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328228

RESUMO

In intensive agricultural watersheds, riverine particulate organic matter (POM) may be transported from many sources such as rice paddies, crop uplands, forests, and livestock farming areas during rainy seasons. However, the impacts of land-use and rainfall changes on the POM sources are not well understood. In this study, changes in the sources of riverine POM were investigated in an agricultural area of Korea between 2014 and 2020/21. During this period, land-use and rainfall patterns changed dramatically. The δ13C, δ15N, and C/N of the POM sources as well as those of riverine POM were analyzed, and a stable isotope analysis in R (SIAR) model was utilized for source apportionment. There were differences in δ13C, δ15N, and C/N among the sources. For example, manure had higher δ13C (-22.6 ± 3.3‰) and δ15N (+10.6 ± 5.9‰) than soils (from -28.0 ± 0.8‰ to -25.1 ± 1.2‰ for δ13C and +3.6 ± 1.7‰ to +9.8 ± 1.4‰ for δ15N). For soils, the δ13C and δ15N were higher for upland soils, while C/N was greater for forest soils than for others. For riverine POM, the δ15N marginally changed; however, the δ13C and C/N increased from -26.1 ± 0.9‰ to -20.8 ± 5.3‰ and from +7.7 ± 1.7 to +18.8 ± 8.3 between 2014 and 2020/21, respectively. The SIAR model showed that the contributions of paddy (from 41.0% to 14.9%) and upland fields (from 48.1% to 23.7%) to riverine POM decreased between the periods due to decreased paddy area and the implementation of best management practice on upland fields, respectively. However, the contribution of forests (from 3.5% to 28.0%) and manure (from 7.4% to 33.5%) increased probably due to improper management of forest clear-cutting sites and livestock manure storage sites. The contributions of agricultural soils to riverine POM decreased in drier years. Our study suggests that land management rather than land-use area is critical in riverine POM management, particularly in wetter years.


Assuntos
Monitoramento Ambiental , Material Particulado , Isótopos de Nitrogênio/análise , Esterco , Teorema de Bayes , Solo
2.
Sci Total Environ ; 753: 142053, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32896739

RESUMO

Soil surface with crop residue is effective in reducing soil erosion and carbon (C), nitrogen (N), and phosphorus (P) losses from sloping fields. However, there is a high possibility that surface cover increases export of dissolved organic C (DOC) though relevant field studies under natural rainfall are lacking. In this study, the effects of surface cover with rice (Oryza sativa L.) straw on soil and CNP losses in both dissolved and sediment-bound forms from maize (Zea mays L.) fields were investigated under two fertilization levels (standard and double) × two types of runoff experiments (natural rainfall and artificial irrigation). Changes in soil properties including moisture, temperature, nutrients, and C concentration as well as maize yield were also examined. Surface cover decreased soil and total CNP losses by up to 82% across the experimental plots with some exceptions. However, surface cover increased DOC export in both natural (by 68-82% in total across all events) and artificial (by 3-4 fold) runoff, suggesting that crop residue cover may act as a DOC pollution source of water bodies. The contribution of rice straw to DOC, which was calculated using the δ13C of DOC from covered plots (-24.1 to -28.0‰) and control plots (-19.6 to -25.1‰), was 52.5-95.8%. The concentrations of K2SO4-extractable and microbial biomass C of the soils did not differ between covered and control plots, suggesting that DOC produced from rice straw was not incorporated into the soils, but rather, was washed out with surface runoff in this study. Surface cover increased maize growth and yield, particularly in double fertilization plots, through improved soil moisture, temperature, and nutrient conditions. To take full advantage of surface cover with crop residue, a further study on reducing DOC loss from crop residue needs to be conducted.


Assuntos
Oryza , Solo , Agricultura , Fósforo , Zea mays
3.
Environ Pollut ; 291: 118154, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34537599

RESUMO

Global meta-analyses showed that biochar application can reduce N2O emission. However, no relevant review study is available for East Asian countries which are responsible for 70% of gaseous N losses from croplands globally. This review analyzed data of the biochar-induced N2O mitigation affected by experimental conditions, including experimental types, biochar types and application rates, soil properties, and chemical forms and application rates of N fertilizer for East Asian countries. The magnitude of biochar-induced N2O mitigation was evaluated by calculating N2O reduction index (Rindex, percentage reduction of N2O by biochar relative to control). The Rindex was further standardized against biochar application rate by calculating Rindex per unit of biochar application rate (ton ha-1) (Unit Rindex). The Rindex averaged across different experimental types (n = 196) was -21.1 ± 2.4%. Incubation and pot experiments showed greater Rindex than column and field experiments due to higher biochar application rate and shorter experiment duration. Feedstock type and pyrolysis temperature also affected Rindex; either bamboo feedstock or pyrolysis at > 400 °C resulted in a greater Rindex. The magnitude of Rindex also increased with increasing biochar rate. Soil properties did not affect Rindex when evaluated across all experimental types, but there was an indication that biochar decreased N2O emission more at a lower soil moisture level in field experiments. The magnitude of Rindex increased with increasing N fertilizer rate up to 500-600 kg N ha-1, but it decreased thereafter. The Unit Rindex averaged across experimental types was -1.2 ± 0.9%, and it was rarely affected by experimental type and conditions but diminished with increasing biochar rate. Our results highlight that since N2O mitigation by biochar is affected by biochar application rate, Rindex needs to be carefully evaluated by standardizing against biochar application rate to suggest the best conditions for biochar usage in East Asia.


Assuntos
Óxido Nitroso , Solo , Carvão Vegetal , Análise de Dados , Óxido Nitroso/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA