Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396783

RESUMO

Wound management practices have made significant advancements, yet the search for improved antiseptics persists. In our pursuit of solutions that not only prevent infections but also address broader aspects of wound care, we investigated the impact of integrating trimethyl chitosan (TMC) into a widely used poly(vinylpyrrolidone)-iodine gel (PVP-I gel). Our study assessed the antimicrobial efficacy of the PVP gel with TMC against Escherichia coli, Staphylococcus aureus, multidrug-resistant S. aureus MRSA, and Candida albicans. Additionally, we compared hemostatic effects using a liver puncture bleeding model and evaluated wound healing through histological sections from full-thickness dermal wounds in rats. The results indicate that incorporating TMC into the commercially available PVP-I gel did not compromise its antimicrobial activity. The incorporation of TMC into the PVP-I gel markedly improves its hemostatic activity. The regular application of the PVP-I gel with TMC resulted in an increased blood vessel count in the wound bed and facilitated the development of thicker fibrous tissue with a regenerated epidermal layer. These findings suggest that TMC contributes not only to antimicrobial activity but also to the intricate processes of tissue regeneration. In conclusion, incorporating TMC proves beneficial, making it a valuable additive to commercially available antiseptic agents.


Assuntos
Anti-Infecciosos Locais , Anti-Infecciosos , Quitosana , Hemostáticos , Iodo , Staphylococcus aureus Resistente à Meticilina , Ratos , Animais , Anti-Infecciosos Locais/farmacologia , Povidona-Iodo/farmacologia , Quitosana/farmacologia , Hemostáticos/farmacologia , Anti-Infecciosos/farmacologia
2.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732054

RESUMO

This study investigates the efficacy of a thermo-responsive N-acetylcysteine (NAC) hydrogel on wound healing and oral ulcer recovery. Formulated by combining NAC with methylcellulose, the hydrogel's properties were assessed for temperature-induced gelation and cell viability using human fibroblast cells. In vivo experiments on Sprague Dawley rats compared the hydrogel's effects against saline, NAC solution, and a commercial NAC product. Results show that a 5% NAC and 1% methylcellulose solution exhibited optimal outcomes. While modest improvements in wound healing were observed, significant enhancements were noted in oral ulcer recovery, with histological analyses indicating fully regenerated mucosal tissue. The study concludes that modifying viscosity enhances NAC retention, facilitating tissue regeneration. These findings support previous research on the beneficial effects of antioxidant application on damaged tissues, suggesting the potential of NAC hydrogels in improving wound care and oral ulcer treatment.


Assuntos
Acetilcisteína , Hidrogéis , Úlceras Orais , Ratos Sprague-Dawley , Cicatrização , Cicatrização/efeitos dos fármacos , Acetilcisteína/farmacologia , Animais , Ratos , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Úlceras Orais/tratamento farmacológico , Úlceras Orais/patologia , Regeneração/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Masculino , Temperatura , Sobrevivência Celular/efeitos dos fármacos
3.
Stem Cell Res Ther ; 15(1): 103, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589946

RESUMO

BACKGROUND: Oral ulcers are a common side effect of chemotherapy and affect patients' quality of life. While stem cell transplantation is a potential treatment for oral ulcers, its efficacy is limited as the stem cells tend to remain in the affected area for a short time. This study aims to develop a treatment for oral ulcers by using trimethyl chitosan (TMC) hydrogel with human tonsil-derived stem cells (hTMSCs) to increase the therapeutic effect of stem cells and investigate their effectiveness. METHODS: Animals were divided into four experimental groups: Control, TMC hydrogel, hTMSCs, and hTMSCs loaded in TMC hydrogel (Hydrogel + hTMSCs) (each n = 8). Oral ulcers were chemically induced by anesthetizing the rats followed by injection of dilute acetic acid in the right buccal mucosa. After confirming the presence of oral ulcers in the animals, a single subcutaneous injection of 100 µL of each treatment was applied to the ulcer area. Histological analyses were performed to measure inflammatory cells, oral mucosal thickness, and fibrosis levels. The expression level of inflammatory cytokines was also measured using RT-PCR to gauge therapeutic the effect. RESULTS: The ulcer size was significantly reduced in the TMC hydrogel + hTMSCs group compared to the control group. The stem cells in the tissue were only observed until Day 3 in the hTMSCs treated group, while the injected stem cells in the TMC Hydrogel + hTMSCs group were still present until day 7. Cytokine analysis related to the inflammatory response in the tissue confirmed that the TMC Hydrogel + hTMSCs treated group demonstrated superior wound healing compared to other experimental groups. CONCLUSION: This study has shown that the adhesion and viability of current stem cell therapies can be resolved by utilizing a hydrogel prepared with TMC and combining it with hTMSCs. The combined treatment can promote rapid healing of oral cavity wounds by enhancing anti-inflammatory effects and expediting wound healing. Therefore, hTMSC loaded in TMC hydrogel was the most effective wound-healing approach among all four treatment groups prolonging stem cell survival. However, further research is necessary to minimize the initial inflammatory response of biomaterials and assess the safety and long-term effects for potential clinical applications.


Assuntos
Quitosana , Células-Tronco Mesenquimais , Úlceras Orais , Humanos , Ratos , Animais , Úlceras Orais/terapia , Úlcera , Hidrogéis , Tonsila Palatina , Qualidade de Vida , Modelos Animais , Citocinas
4.
Biomed Mater ; 19(5)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39116908

RESUMO

During the healing process after intra-nasal surgery, the growth and repair of damaged tissues can result in the development of postoperative adhesions. Various techniques have been devised to minimize the occurrence of postoperative adhesions which include insertion of stents in the middle meatus, application of removable nasal packing, and utilizing biodegradable materials with antiadhesive properties. This study assesses the efficacy of two sodium hyaluronate (SH)-based freeze-dried hydrogel composites in preventing postoperative nasal adhesions, comparing them with commonly used biodegradable materials in nasal surgery. The freeze-dried hydrogels, sodium hyaluronate and collagen 1(SH-COL1) and sodium hyaluronate, carboxymethyl cellulose, and collagen 1 (SH-CMC-COL1), were evaluated for their ability to reduce bleeding time, promote wound healing, and minimize fibrous tissue formation. Results showed that SH-CMC-COL1 significantly reduced bleeding time compared to both biodegradable polyurethane foam and SH-COL1. Both SH-COL1 and SH-CMC-COL1 exhibited enhanced wound healing effects, as indicated by significantly greater wound size reduction after two weeks compared to the control. Histological analyses revealed significant differences in re-epithelialization and blood vessel count among all tested materials, suggesting variable initial wound tissue response. Although all treatment groups had more epithelial growth, with X-SCC having higher blood vessel count at 7 d post treatment, all treatment groups did not differ in all histomorphometric parameters by day 14. However, the long-term application of SH-COL1 demonstrated a notable advantage in reducing nasal adhesion formation compared to all other tested materials. This indicates the potential of SH-based hydrogels, particularly SH-COL1, in mitigating postoperative complications associated with nasal surgery. These findings underscore the versatility and efficacy of SH-based freeze-dried hydrogel composites for the management of short-term and long-term nasal bleeding with an anti-adhesion effect. Further research is warranted to optimize their clinical use, particularly in understanding the inflammatory factors influencing tissue adhesions and assessing material performance under conditions mimicking clinical settings. Such insights will be crucial for refining therapeutic approaches and optimizing biomaterial design, ultimately improving patient outcomes in nasal surgery.


Assuntos
Ácido Hialurônico , Hidrogéis , Cicatrização , Ácido Hialurônico/química , Hidrogéis/química , Aderências Teciduais/prevenção & controle , Animais , Cicatrização/efeitos dos fármacos , Materiais Biocompatíveis/química , Poliuretanos/química , Carboximetilcelulose Sódica/química , Teste de Materiais , Nariz , Masculino , Liofilização , Complicações Pós-Operatórias/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA