Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cytotherapy ; 23(6): 500-509, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33752960

RESUMO

BACKGROUND AIMS: Corneal inflammation after alkali burns often results in vision loss due to corneal opacification and neovascularization. Mesenchymal stem cells (MSCs) and their secreted factors (secretome) have been studied for their anti-inflammatory and anti-angiogenic properties with encouraging results. However, topical instillation of MSCs or their secretome is often accompanied by issues related to delivery or rapid washout. Polyethylene glycol (PEG) and collagen are well-known biomaterials used extensively in scaffolds for tissue engineering. To effectively suppress alkaline burn-induced corneal injury, the authors proposed encapsulating MSCs within collagen gels cross-linked with multi-functional PEG-succinimidyl esters as a means to deliver the secretome of immobilized MSCs. METHODS: Human MSCs were added to a neutralized collagen solution and mixed with a solution of four-arm PEG-N-hydroxysuccinimide. An ex vivo organ culture was conducted using rabbit corneas injured by alkali burn. MSCs were encapsulated within PEG-collagen hydrogels and injected onto the wounded cornea immediately following alkali burn and washing. Photographs of the ocular surface were taken over a period of 7 days after the alkali burn and processed for immunohistochemical evaluation. Samples were split into three groups: injury without treatment, MSCs alone, and MSCs encapsulated within PEG-collagen hydrogels. RESULTS: All corneas in ex vivo organ culture lost their transparency immediately after alkali burn, and only the groups treated with MSCs and MSCs encapsulated within PEG-collagen hydrogels recovered some transparency after 7 days. Immunohistochemical analysis revealed increased expression of vimentin in the anterior corneal stroma of the group without treatment indicative of fibrotic healing, whereas less stromal vimentin was detected in the group containing MSCs encapsulated within the PEG-collagen hydrogels. CONCLUSIONS: PEG-collagen hydrogels enable the encapsulation of viable MSCs capable of releasing secreted factors onto the ocular surface. Encapsulating MSCs within PEG-collagen hydrogels may be a promising method for delivering their therapeutic benefits in cases of ocular inflammatory diseases, such as alkali burn injuries.


Assuntos
Células-Tronco Mesenquimais , Álcalis , Animais , Materiais Biocompatíveis , Colágeno , Córnea , Hidrogéis , Técnicas de Cultura de Órgãos , Polietilenoglicóis , Coelhos
2.
ACS Nano ; 18(33): 21925-21938, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39106436

RESUMO

Corneal defects can lead to stromal scarring and vision loss, which is currently only treatable with a cadaveric corneal transplant. Although in situ-forming hydrogels have been shown to foster regeneration of the cornea in the setting of stromal defects, the cross-linking, biomechanical, and compositional parameters that optimize healing have not yet been established. This, Corneal defects are also almost universally inflamed, and their rapid closure without fibrosis are critical to preserving vision. Here, an in situ forming, bioorthogonally cross-linked, nanocluster (NC)-reinforced collagen and hyaluronic acid hydrogel (NCColHA hydrogel) with enhanced structural integrity and both pro-regenerative and anti-inflammatory effects was developed and tested within a corneal defect model in vivo. The NCs serve as bioorthogonal nanocross-linkers, providing higher cross-linking density than polymer-based alternatives. The NCs also serve as delivery vehicles for prednisolone (PRD) and the hepatocyte growth factor (HGF). NCColHA hydrogels rapidly gel within a few minutes upon administration and exhibit robust rheological properties, excellent transparency, and negligible swelling/deswelling behavior. The hydrogel's biocompatibility and capacity to support cell growth were assessed using primary human corneal epithelial cells. Re-epithelialization on the NCColHA hydrogel was clearly observed in rabbit eyes, both ex vivo and in vivo, with expression of normal epithelial biomarkers, including CD44, CK12, CK14, α-SMA, Tuj-1, and ZO-1, and stratified, multilayered morphology. The applied hydrogel maintained its structural integrity for at least 14 days and remodeled into a transparent stroma by 56 days.


Assuntos
Hidrogéis , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Coelhos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Córnea/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Humanos , Reagentes de Ligações Cruzadas/química , Colágeno/química , Fator de Crescimento de Hepatócito/farmacologia , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento de Hepatócito/química
3.
Bioact Mater ; 40: 417-429, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39022184

RESUMO

In situ-forming hydrogels are an attractive option for corneal regeneration, and the delivery of growth factors from such constructs have the potential to improve re-epithelialization and stromal remodeling. However, challenges persist in controlling the release of therapeutic molecules from hydrogels. Here, an in situ-forming bio-orthogonally crosslinked hydrogel containing growth factors tethered via photocleavable linkages (PC-HACol hydrogel) was developed to accelerate corneal regeneration. Epidermal growth factor (EGF) was conjugated to the hydrogel backbone through photo-cleavable (PC) spacer arms and was released when exposed to mild intensity ultraviolet (UV) light (2-5 mW/cm2, 365 nm). The PC-HACol hydrogel rapidly gelled within a few minutes when applied to corneal defects, with excellent transparency and biocompatibility. After subsequent exposure to UV irradiation, the hydrogel promoted the proliferation and migration of corneal epithelial cells in vitro. The rate of re-epithelialization was positively correlated to the frequency of irradiation, verified through ex vivo rabbit cornea organ culture studies. In an in vivo rat corneal wound healing study, the PC-HACol hydrogel exposed to UV light significantly promoted re-epithelialization, the remodeling of stromal layers, and exhibited significant anti-scarring effects, with minimal α-SMA and robust ALDH3A1 expression. Normal differentiation of the regenerated epithelia after healing was evaluated by expression of the corneal epithelial biomarker, CK12. The remodeled cornea exhibited full recovery of corneal thickness and layer number without hyperplasia of the epithelium.

4.
bioRxiv ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39386574

RESUMO

The scarcity of human donor corneal graft tissue worldwide available for corneal transplantation necessitates the development of alternative therapeutic strategies for treating patients with corneal blindness. Corneal stromal stem cells (CSSCs) have the potential to address this global shortage by allowing a single donor cornea to treat multiple patients. To directly deliver CSSCs to corneal defects within an engineered biomatrix, we developed a UNIversal Orthogonal Network (UNION) collagen bioink that crosslinks in situ with a bioorthogonal, covalent chemistry. This cell-gel therapy is optically transparent, stable against contraction forces exerted by CSSCs, and permissive to the efficient growth of corneal epithelial cells. Furthermore, CSSCs remain viable within the UNION collagen gel precursor solution under standard storage and transportation conditions. This approach promoted corneal transparency and re-epithelialization in a rabbit anterior lamellar keratoplasty model, indicating that the UNION collagen bioink serves effectively as an in situ -forming, suture-free therapy for delivering CSSCs to corneal wounds. TEASER. Corneal stem cells are delivered within chemically crosslinked collagen as a transparent, regenerative biomaterial therapy.

5.
ACS Appl Bio Mater ; 6(5): 1787-1797, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37126648

RESUMO

Bioengineered corneal tissue is a promising therapeutic modality for the treatment of corneal blindness as a substitute for cadaveric graft tissue. In this study, we fabricated a collagen gel using ultraviolet-A (UV-A) light and riboflavin as a photosensitizer (PhotoCol-RB) as an in situ-forming matrix to fill corneal wounds and create a cohesive interface between the crosslinked gel and adjacent collagen. The PhotoCol-RB gels supported corneal epithelialization and exhibited higher transparency compared to physically crosslinked collagen. We showed that different riboflavin concentrations yielded gels with different mechanical and biological properties. In vitro experiments using human corneal epithelial cells (hCECs) showed that hCECs are able to proliferate on the gel and express corneal cell markers such as cytokeratin 12 (CK12) and tight junctions (ZO-1). Using an ex vivo burst assay, we also showed that the PhotoCol-RB gels are able to seal corneal perforations. Ex vivo organ culture of the gels filling lamellar keratectomy wounds showed that the epithelium that regenerated over the PhotoCol-RB gels formed a multilayer compared to just a double layer for those that grew over physically cross-linked collagen. These gels can be formed either in situ directly on the wound site to conform to the geometry of a defect, or can be preformed and then applied to the corneal wound. Our results indicate that PhotoCol-RB gels merit further investigation as a way to stabilize and repair deep and perforating corneal wounds.


Assuntos
Colágeno , Córnea , Humanos , Colágeno/farmacologia , Regeneração , Riboflavina/farmacologia , Géis/farmacologia
6.
Transl Vis Sci Technol ; 11(10): 22, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36239965

RESUMO

Purpose: Millions worldwide suffer vision impairment or blindness from corneal injury, and there remains an urgent need for a more effective and accessible way to treat corneal defects. We have designed and characterized an in situ-forming semi-interpenetrating polymer network (SIPN) hydrogel using biomaterials widely used in ophthalmology and medicine. Methods: The SIPN was formed by cross-linking collagen type I with bifunctional polyethylene glycol using N-hydroxysuccinimide ester chemistry in the presence of linear hyaluronic acid (HA). Gelation time and the mechanical, optical, swelling, and degradation properties of the SIPN were assessed. Cytocompatibility with human corneal epithelial cells and corneal stromal stem cells (CSSCs) was determined in vitro, as was the spatial distribution of encapsulated CSSCs within the SIPN. In vivo wound healing was evaluated by multimodal imaging in an anterior lamellar keratectomy injury model in rabbits, followed by immunohistochemical analysis of treated and untreated tissues. Results: The collagen-hyaluronate SIPN formed in situ without an external energy source and demonstrated mechanical and optical properties similar to the cornea. It was biocompatible with human corneal cells, enhancing CSSC viability when compared with collagen gel controls and preventing encapsulated CSSC sedimentation. In vivo application of the SIPN significantly reduced stromal defect size compared with controls after 7 days and promoted multilayered epithelial regeneration. Conclusions: This in situ-forming SIPN hydrogel may be a promising alternative to keratoplasty and represents a step toward expanding treatment options for patients suffering from corneal injury. Translational Relevance: We detail the synthesis and initial characterization of an SIPN hydrogel as a potential alternative to lamellar keratoplasty and a tunable platform for further development in corneal tissue engineering and therapeutic cell delivery.


Assuntos
Lesões da Córnea , Hidrogéis , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Colágeno/química , Colágeno/farmacologia , Colágeno/uso terapêutico , Colágeno Tipo I , Ésteres , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Ácido Hialurônico/uso terapêutico , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico , Polímeros/química , Coelhos
7.
Regen Ther ; 20: 51-60, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35402662

RESUMO

To assess corneal inflammation from alkali chemical burns, we examined the therapeutic effects of in situ-forming hyaluronic acid (HA) hydrogels crosslinked via blue light-induced thiol-ene reaction on a rat corneal alkali burn model. Animals were divided into three groups (n = 7 rats per group): untreated, treated with 0.1% HA eye drops, and treated with crosslinked HA hydrogels. Crosslinking of HA hydrogel followed by the administration of HA eye drops and crosslinked HA hydrogels were carried out once a day from days 0-4. Corneal re-epithelialization, opacity, neovascularization, thickness, and histology were evaluated to compare the therapeutic effects of the three groups. Further investigation was conducted on the transparency of HA hydrogels to acquire the practical capabilities of hydrogel as a reservoir for drug delivery. Compared to untreated animals, animals treated with crosslinked HA hydrogels exhibited greater corneal re-epithelialization on days 1, 2, 4, and 7 post-injury (p = 0.004, p = 0.007, p = 0.008, and p = 0.034, respectively) and the least corneal neovascularization (p = 0.008). Histological analysis revealed lower infiltration of stromal inflammatory cells and compact collagen structure in crosslinked HA hydrogel-treated animals than in untreated animals. These findings corresponded with immunohistochemical analyses indicating that the expression of inflammatory markers such as α-SMA, MMP9, and IL1-ß was lower in animals treated with crosslinked HA hydrogels than untreated animals and animals treated only with 0.1% HA eye drops. With beneficial pharmacological effects such as re-epithelization and anti-inflammation, in situ-forming hyaluronic acid (HA) hydrogels may be a promising approach to effective drug delivery in cases of corneal burn injuries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA