Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Anim Sci Technol ; 65(3): 479-489, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37332284

RESUMO

Livestock production depends on the utilization of nutrients, and when this is accomplished, there is accelerated momentum toward growth with a low cost-to-feed ratio. Public concern over the consumption of pork with antibiotic residues in animals fed antibiotic growth promoters (AGP) has paved the way for using other natural additives to antibiotics, such as herbs and their products, probiotics, prebiotics, etc. Numerous feed additives are trending to achieve this goal, and a classic example is vitamins and minerals. Vitamins and minerals represent a relatively small percentage of the diet, but they are critical to animal health, well-being, and performance; both play a well-defined role in metabolism, and their requirements can vary depending on the physiological stage of the animals. At the same time, the absence of these vitamins and minerals in animal feed can impair the growth and development of muscles and bones. Most commercial feeds contain vitamins and trace minerals that meet nutrient requirements recommended by National Research Council and animal feeding standards. However, the potential variability and bioavailability of vitamins and trace elements in animal feeds remain controversial because daily feed intake varies, and vitamins are degraded by transportation, storage, and processing. Accordingly, the requirement for vitamins and minerals may need to be adjusted to reflect increased production levels, yet the information presented on this topic is still limited. Therefore, this review focuses on the role and function of different sources of minerals, the mode of action, the general need for micro and macro minerals in non-ruminant diets, and how they improve animal performance.

2.
J Anim Sci Technol ; 65(3): 562-578, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37332279

RESUMO

The aim of the present study was to evaluate the effects of dietary supplementation of Ca-Mg complex on the longevity and reproductive performance of sows. In total, seventy-two gilts ([Yorkshire × Landrace] × Duroc, average body weight 181 kg) were randomly allocated to 1 of 3 treatments during 4 successive parity in a 4 × 3 factorial arrangement. Treatments consisted of CON (basal diet), CM1 (basal diet -MgO - 0.3% limestone + 0.4% Ca-Mg complex), and CM2 (basal diet - MgO - 0.7% limestone + 0.4% Ca-Mg complex). A higher (p < 0.05) number of totals born and live piglets, and sows increased feed intake during gestation and lactation, increased backfat thickness, and increased estrus interval were observed (p < 0.05) during their third and fourth parity than during their first and second parity. Ca-Mg complex supplementation improved (p < 0.05) the number of total piglets during the first and second parity as well as live-born piglets during the first to third parity, reduction (p < 0.05) in backfat thickness during the third and fourth parity, a higher (p < 0.05) initial and final number of suckling piglets as well as higher weaning weight compared with sows fed CON diet during the first, second, and third parity. The average daily gain (ADG) was higher (p < 0.05) in piglets born to CM1 and CM2 sows regardless of parity. The treatment diets fed to sows lowered (p < 0.05) the duration of first to last piglet birth and placenta expulsion time compared with CON sows. A significant interactive effect (p = 0.042) between parities and treatment diets was observed for the first to last piglet birth. Thus, Ca-Mg complex supplementation by partially replacing limestone in the basal diet enhanced sow performance, specifically during their third and fourth parity, thereby improving sow longevity.

3.
J Anim Sci Technol ; 65(6): 1308-1322, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38616871

RESUMO

Minerals is required small amounts among various nutrients, but it has a significant impact on sow longevity and reproduction performance. This study was carried out to see the beneficial effects of marine-derived Ca-Mg complex on the reproductive performance of sows during four-parity periods. Seventy-two gilts ([Yorkshire × Landrace] × Duroc), with an average body weight of 181 kg, were randomly allocated to three groups; CON (basal diet), 0.3LC (CON - MgO - 0.3% limestone + 0.4% Ca-Mg complex), and 0.7LC (CON - MgO - 0.7% limestone + 0.4% Ca-Mg complex). During parity 3 and 4, the expression level of SCD gene was lower in the umbilical cord of piglets born to 0.3LC and 0.7LC sows compared with the CON sows. During parity 2, 3 and 4, SLC2A2 and FABP4 gene expressions were higher in the umbilical cord of piglets born to 0.7LC sows and the placenta of sows from 0.3LC groups, respectively. Ca-Mg complex increased (p < 0.05) Ca and Mg concentrations in sows and their piglets' serum as well as in colostrum regardless of parities. The serum vitamin D concentration was higher (p < 0.05) in their first parity, whereas serum prolactin and estrogen concentrations were higher (p < 0.05) during the fourth and third parity, respectively. The growth hormone concentrations were higher (p < 0.05) in the piglets born to sows during the first and second parity. The fat and immunoglobulin A (IgA) concentrations in colostrum were higher (p < 0.05) during the third and fourth parity, respectively. A reduction (p < 0.05) in salivary cortisol, epinephrine, and norepinephrine concentrations was observed in 0.3LC and 0.7LC sow groups compared with CON after farrowing regardless of parity, however before farrowing, a reduction in norepinephrine was observed. Before farrowing, the epinephrine and norepinephrine concentrations were higher (p < 0.05) during the first and second parity. After farrowing, the concentration of these hormones was higher during the second parity. Taken together, sows' parity and dietary Ca-Mg complex supplementation influenced serum metabolites, colostrum nutrients, stress hormones as well as the gene expressions related to lipid and glucose metabolism.

4.
Anim Biosci ; 35(4): 577-586, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34991211

RESUMO

OBJECTIVE: The objective of this study was to evaluate the effects of supplementing quercetin extracted from Sophora japonica flower (QS) to the diet of broiler chicks on their growth performance, apparent nutrient digestibility, cecal microbiota, serum lipid profiles, relative organ weight, and breast muscle quality. METHODS: A total of 1,088 1-day-old broiler chicks (mixed sex) were randomly assigned to four groups based on the initial body weight (43.00±0.29 g). The experimental period was 35 days (starter, days 0 to 7; grower, days 7 to 21; finisher, days 21 to 35). There were 17 replicate cages per treatment and 16 birds per cage. Dietary treatments consisted of birds receiving basal diet without quercetin as the control group and treatment groups consisted of birds fed basal diet supplemented with 0.2, 0.4, or 0.6 g/kg QS. RESULTS: With the increase of the QS dosage, body weight gain during days 0 to 7 (p = 0.021), 7 to 21 (p = 0.010), and 1 to 35 (p = 0.045), feed intake during days 0 to 7 (p = 0.037) and 1 to 35 (p = 0.025), apparent dry matter digestibility (p = 0.008), apparent energy retention (p = 0.004), cecal lactic acid bacteria counts (p = 0.023), the relative weight of breast muscle (p = 0.014), pH value from breast muscle (p<0.001), and the water holding capacity of breast muscle (p = 0.012) increased linearly, whereas the drip loss from breast muscle (p = 0.001) decreased linearly. CONCLUSION: The addition of QS in the diet of broiler chicks had positive effects on the breast muscle yield and breast muscle quality, and improved the dry matter digestibility and energy retention by increasing cecal beneficial bacteria counts, thus improving growth performance.

5.
Animals (Basel) ; 10(6)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486180

RESUMO

Due to the increasing safety concerns about the risk of spreading antibiotic resistance in the environment, and the presence of chemical residues in animal products, using organic acids (OAs) to replace antibiotic in the diet of farm animals has increased considerably in recent years. It has been suggested that OAs could attribute to diverse elements such as antimicrobial activity, decreasing the pH of digesta particularly in the gastrointestinal tract (GIT), slowing feed transit in the GIT to maximize feed digestion and nutrient absorption, inducing enzyme secretion and activity in the small intestine, and providing nutrients to intestinal tissue. It has been reported that OAs mixture might be more effective than individual OAs due to the synergistic effects of different pKa values and have a broad-spectrum activity. In conclusion, this review showed that an OA mixture, which can improve nutrient digestibility and growth performance, modulate intestinal bacterial populations and improve gut health, as well as decreasing gas emission, can be used as alternative to antibiotic growth promoters. However, the results of OA mixtures are not always consistent, and the response to dietary OAs could be affected by the type of OAs, dosage, feed formula, and the age of animals. In this review, we will give an overview of the current use of OAs mixture in swine feed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA