Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(17): e2120439119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35412862

RESUMO

Long-duration spaceflight induces changes to the brain and cerebrospinal fluid compartments and visual acuity problems known as spaceflight-associated neuro-ocular syndrome (SANS). The clinical relevance of these changes and whether they equally affect crews of different space agencies remain unknown. We used MRI to analyze the alterations occurring in the perivascular spaces (PVS) in NASA and European Space Agency astronauts and Roscosmos cosmonauts after a 6-mo spaceflight on the International Space Station (ISS). We found increased volume of basal ganglia PVS and white matter PVS (WM-PVS) after spaceflight, which was more prominent in the NASA crew than the Roscosmos crew. Moreover, both crews demonstrated a similar degree of lateral ventricle enlargement and decreased subarachnoid space at the vertex, which was correlated with WM-PVS enlargement. As all crews experienced the same environment aboard the ISS, the differences in WM-PVS enlargement may have been due to, among other factors, differences in the use of countermeasures and high-resistive exercise regimes, which can influence brain fluid redistribution. Moreover, NASA astronauts who developed SANS had greater pre- and postflight WM-PVS volumes than those unaffected. These results provide evidence for a potential link between WM-PVS fluid and SANS.


Assuntos
Astronautas , Líquido Cefalorraquidiano , Sistema Glinfático , Voo Espacial , Transtornos da Visão , Líquido Cefalorraquidiano/diagnóstico por imagem , Sistema Glinfático/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Transtornos da Visão/líquido cefalorraquidiano , Transtornos da Visão/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
2.
Neuroimage ; 271: 120009, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907282

RESUMO

Enlarged perivascular spaces (PVS) are considered a biomarker for vascular pathology and are observed in normal aging and neurological conditions; however, research on the role of PVS in health and disease are hindered by the lack of knowledge regarding the normative time course of PVS alterations with age. To this end, we characterized the influence of age, sex and cognitive performance on PVS anatomical characteristics in a large cross-sectional cohort (∼1400) of healthy subjects between 8 and 90 years of age using multimodal structural MRI data. Our results show age is associated with wider and more numerous MRI-visible PVS over the course of the lifetime with spatially-varying patterns of PVS enlargement trajectories. In particular, regions with low PVS volume fraction in childhood are associated with rapid age-related PVS enlargement (e.g., temporal regions), while regions with high PVS volume fraction in childhood are associated with minimal age-related PVS alterations (e.g., limbic regions). PVS burden was significantly elevated in males compared to females with differing morphological time courses with age. Together, these findings contribute to our understanding of perivascular physiology across the healthy lifespan and provide a normative reference for the spatial distribution of PVS enlargement patterns to which pathological alterations can be compared.


Assuntos
Sistema Glinfático , Masculino , Feminino , Humanos , Longevidade , Estudos Transversais , Imageamento por Ressonância Magnética/métodos , Envelhecimento
3.
Magn Reson Med ; 89(6): 2419-2431, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36692103

RESUMO

PURPOSE: To develop a weakly supervised 3D perivascular spaces (PVS) segmentation model that combines the filter-based image processing algorithm and the convolutional neural network. METHODS: We present a weakly supervised learning method for PVS segmentation by combing a rule-based image processing approach Frangi filter with a canonical deep learning algorithm Unet using conditional random field theory. The weighted cross entropy loss function and the training patch selection were implemented for the optimization and to alleviate the class imbalance issue. The performance of the model was evaluated on the Human Connectome Project data. RESULTS: The proposed method increases the true positive rate compared to the rule-based method and reduces the false positive rate by 36% in the weakly supervised training experiment and 39.4% in the supervised training experiment compared to Unet, which results in superior overall performance. In addition, by training the model on manually quality controlled and annotated data which includes the subjects with the presence of white matter hyperintensities, the proposed method differentiates between PVS and white matter hyperintensities, which reduces the false positive rate by 78.5% compared to weakly supervised trained model. CONCLUSIONS: Combing the filter-based image processing algorithm and the convolutional neural network algorithm could improve the model's segmentation accuracy, while reducing the training dependence on the large scale annotated PVS mask data by the trained physician. Compared to the filter-based image processing algorithm, the data driven PVS segmentation model using quality-controlled data as the training target could differentiate the white matter hyperintensity from PVS resulting low false positive rate.


Assuntos
Imageamento por Ressonância Magnética , Redes Neurais de Computação , Humanos , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
4.
Neuroimage ; 257: 119329, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35609770

RESUMO

In this article, we provide an overview of current neuroimaging methods for studying perivascular spaces (PVS) in humans using brain MRI. In recent years, an increasing number of studies highlighted the role of PVS in cerebrospinal/interstial fluid circulation and clearance of cerebral waste products and their association with neurological diseases. Novel strategies and techniques have been introduced to improve the quantification of PVS and to investigate their function and morphological features in physiological and pathological conditions. After a brief introduction on the anatomy and physiology of PVS, we examine the latest technological developments to quantitatively analyze the structure and function of PVS in humans with MRI. We describe the applications, advantages, and limitations of these methods, providing guidance and suggestions on the acquisition protocols and analysis techniques that can be applied to study PVS in vivo. Finally, we review the human neuroimaging studies on PVS across the normative lifespan and in the context of neurological disorders.


Assuntos
Sistema Glinfático , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Sistema Glinfático/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos
5.
Neuroimage ; 230: 117756, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33460797

RESUMO

Head motion during MRI acquisition presents significant challenges for neuroimaging analyses. In this work, we present a retrospective motion correction framework built on a Fourier domain motion simulation model combined with established 3D convolutional neural network (CNN) architectures. Quantitative evaluation metrics were used to validate the method on three separate multi-site datasets. The 3D CNN was trained using motion-free images that were corrupted using simulated artifacts. CNN based correction successfully diminished the severity of artifacts on real motion affected data on a separate test dataset as measured by significant improvements in image quality metrics compared to a minimal motion reference image. On the test set of 13 image pairs, the mean peak signal-to-noise-ratio was improved from 31.7 to 33.3 dB. Furthermore, improvements in cortical surface reconstruction quality were demonstrated using a blinded manual quality assessment on the Parkinson's Progression Markers Initiative (PPMI) dataset. Upon applying the correction algorithm, out of a total of 617 images, the number of quality control failures was reduced from 61 to 38. On this same dataset, we investigated whether motion correction resulted in a more statistically significant relationship between cortical thickness and Parkinson's disease. Before correction, significant cortical thinning was found to be restricted to limited regions within the temporal and frontal lobes. After correction, there was found to be more widespread and significant cortical thinning bilaterally across the temporal lobes and frontal cortex. Our results highlight the utility of image domain motion correction for use in studies with a high prevalence of motion artifacts, such as studies of movement disorders as well as infant and pediatric subjects.


Assuntos
Artefatos , Córtex Cerebral/diagnóstico por imagem , Aprendizado Profundo/normas , Processamento de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/normas , Movimento (Física) , Adolescente , Adulto , Transtorno Autístico/diagnóstico por imagem , Criança , Bases de Dados Factuais/normas , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
6.
Neuroimage ; 243: 118489, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34450260

RESUMO

The amygdala is a heterogenous set of nuclei with widespread cortical connections that continues to develop postnatally with vital implications for emotional regulation. Using high-resolution anatomical and multi-shell diffusion MRI in conjunction with novel amygdala segmentation, cutting-edge tractography, and Neurite Orientation Dispersion and Density (NODDI) methods, the goal of the current study was to characterize age associations with microstructural properties of amygdala subnuclei and amygdala-related white matter connections across adolescence (N = 61, 26 males; ages of 8-22 years). We found age-related increases in the Neurite Density Index (NDI) in the lateral nucleus (LA), dorsal and intermediate divisions of the basolateral nucleus (BLDI), and ventral division of the basolateral nucleus and paralaminar nucleus (BLVPL). Additionally, there were age-related increases in the NDI of the anterior commissure, ventral amygdalofugal pathway, cingulum, and uncinate fasciculus, with the strongest age associations in the frontal and temporal regions of these white matter tracts. This is the first study to utilize NODDI to show neurite density of basolateral amygdala subnuclei to relate to age across adolescence. Moreover, age-related differences were also notable in white matter microstructural properties along the anterior commissure and ventral amydalofugal tracts, suggesting increased bilateral amygdalae to diencephalon structural connectivity. As these basolateral regions and the ventral amygdalofugal pathways have been involved in associative emotional conditioning, future research is needed to determine if age-related and/or individual differences in the development of these microstructural properties link to socio-emotional functioning and/or risk for psychopathology.


Assuntos
Tonsila do Cerebelo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adolescente , Criança , Imagem de Difusão por Ressonância Magnética , Regulação Emocional , Emoções , Feminino , Humanos , Individualidade , Masculino , Motivação , Lobo Temporal/diagnóstico por imagem , Adulto Jovem
7.
Magn Reson Med ; 86(3): 1718-1733, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33961321

RESUMO

PURPOSE: To develop a new 3D generative adversarial network that is designed and optimized for the application of multimodal 3D neuroimaging synthesis. METHODS: We present a 3D conditional generative adversarial network (GAN) that uses spectral normalization and feature matching to stabilize the training process and ensure optimization convergence (called SC-GAN). A self-attention module was also added to model the relationships between widely separated image voxels. The performance of the network was evaluated on the data set from ADNI-3, in which the proposed network was used to predict PET images, fractional anisotropy, and mean diffusivity maps from multimodal MRI. Then, SC-GAN was applied on a multidimensional diffusion MRI experiment for superresolution application. Experiment results were evaluated by normalized RMS error, peak SNR, and structural similarity. RESULTS: In general, SC-GAN outperformed other state-of-the-art GAN networks including 3D conditional GAN in all three tasks across all evaluation metrics. Prediction error of the SC-GAN was 18%, 24% and 29% lower compared to 2D conditional GAN for fractional anisotropy, PET and mean diffusivity tasks, respectively. The ablation experiment showed that the major contributors to the improved performance of SC-GAN are the adversarial learning and the self-attention module, followed by the spectral normalization module. In the superresolution multidimensional diffusion experiment, SC-GAN provided superior predication in comparison to 3D Unet and 3D conditional GAN. CONCLUSION: In this work, an efficient end-to-end framework for multimodal 3D medical image synthesis (SC-GAN) is presented. The source code is also made available at https://github.com/Haoyulance/SC-GAN.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Atenção , Imageamento Tridimensional , Neuroimagem
8.
Mov Disord ; 36(5): 1126-1136, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33470460

RESUMO

BACKGROUND: The glymphatic system, including the perivascular space (PVS), plays a critical role in brain homeostasis. Although mounting evidence from Alzheimer's disease has supported the potential role of PVS in neurodegenerative disorders, its contribution in Parkinson's disease (PD) has not been fully elucidated. Although idiopathic (IPD) and familial PD (FPD) share similar pathophysiology in terms of protein aggregation, the differential impact of PVS on PD subtypes remains unknown. Our objective was to examine the differences in PVS volume fraction in IPD and FPD compared to healthy controls (HCs) and nonmanifest carriers (NMCs). METHODS: A total of 470 individuals were analyzed from the Parkinson's Progression Markers Initiative database, including (1) IPD (n = 179), (2) FPD (LRRK2 [leucine-rich repeat kinase 2], glucocerebrosidase, or α-synuclein) (n = 67), (3) NMC (n = 101), and (4) HCs (n = 84). Total PVS volume fraction (%) was compared using parcellation and quantitation within greater white matter volume at global and regional levels in all cortical and subcortical white matter. RESULTS: There was a significant increase in global and regional PVS volume fraction in PD versus non-PD, particularly in FPD versus NMC and LRRK2 FPD versus NMC. Regionally, FPD and NMC differed in the medial orbitofrontal region, as did LRRK2 FPD versus NMC. Non-PD and PD differed in the medial orbitofrontal region and the banks of the superior temporal regions. IPD and FPD differed in the cuneus and lateral occipital regions. CONCLUSIONS: Our findings support the role of PVS in PD and highlight a potentially significant contribution of PVS to the pathophysiology of FPD, particularly LRRK2. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Sistema Glinfático , Doença de Parkinson , Sistema Glinfático/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação , Doença de Parkinson/genética , alfa-Sinucleína/metabolismo
9.
Neuroimage ; 221: 117128, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32673745

RESUMO

Cross-scanner and cross-protocol variability of diffusion magnetic resonance imaging (dMRI) data are known to be major obstacles in multi-site clinical studies since they limit the ability to aggregate dMRI data and derived measures. Computational algorithms that harmonize the data and minimize such variability are critical to reliably combine datasets acquired from different scanners and/or protocols, thus improving the statistical power and sensitivity of multi-site studies. Different computational approaches have been proposed to harmonize diffusion MRI data or remove scanner-specific differences. To date, these methods have mostly been developed for or evaluated on single b-value diffusion MRI data. In this work, we present the evaluation results of 19 algorithms that are developed to harmonize the cross-scanner and cross-protocol variability of multi-shell diffusion MRI using a benchmark database. The proposed algorithms rely on various signal representation approaches and computational tools, such as rotational invariant spherical harmonics, deep neural networks and hybrid biophysical and statistical approaches. The benchmark database consists of data acquired from the same subjects on two scanners with different maximum gradient strength (80 and 300 â€‹mT/m) and with two protocols. We evaluated the performance of these algorithms for mapping multi-shell diffusion MRI data across scanners and across protocols using several state-of-the-art imaging measures. The results show that data harmonization algorithms can reduce the cross-scanner and cross-protocol variabilities to a similar level as scan-rescan variability using the same scanner and protocol. In particular, the LinearRISH algorithm based on adaptive linear mapping of rotational invariant spherical harmonics features yields the lowest variability for our data in predicting the fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK) and the rotationally invariant spherical harmonic (RISH) features. But other algorithms, such as DIAMOND, SHResNet, DIQT, CMResNet show further improvement in harmonizing the return-to-origin probability (RTOP). The performance of different approaches provides useful guidelines on data harmonization in future multi-site studies.


Assuntos
Algoritmos , Encéfalo/diagnóstico por imagem , Aprendizado Profundo , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Adulto , Imagem de Difusão por Ressonância Magnética/instrumentação , Imagem de Difusão por Ressonância Magnética/normas , Humanos , Processamento de Imagem Assistida por Computador/normas , Neuroimagem/instrumentação , Neuroimagem/normas , Análise de Regressão
10.
Neuroimage ; 197: 243-254, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31051291

RESUMO

Diffusion tensor imaging (DTI) has been extensively used to map changes in brain tissue related to neurological disorders. Among the most widespread DTI findings are increased mean diffusivity and decreased fractional anisotropy of white matter tissue in neurodegenerative diseases. Here we utilize multi-shell diffusion imaging to separate diffusion signal of the brain parenchyma from non-parenchymal fluid within the white matter. We show that unincorporated anisotropic water in perivascular space (PVS) significantly, and systematically, biases DTI measures, casting new light on the biological validity of many previously reported findings. Despite the challenge this poses for interpreting these past findings, our results suggest that multi-shell diffusion MRI provides a new opportunity for incorporating the PVS contribution, ultimately strengthening the clinical and scientific value of diffusion MRI.


Assuntos
Imagem de Tensor de Difusão , Sistema Glinfático/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto , Idoso , Anisotropia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Adulto Jovem
11.
Alzheimers Dement ; 15(12): 1568-1575, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31862169

RESUMO

INTRODUCTION: Blood-brain barrier (BBB) breakdown is an early independent biomarker of human cognitive dysfunction, as found using gadolinium (Gd) as a contrast agent. Whether Gd accumulates in brains of individuals with an age-dependent BBB breakdown and/or mild cognitive impairment remains unclear. METHODS: We analyzed T1-weighted magnetic resonance imaging (MRI) scans from 52 older participants with BBB breakdown in the hippocampus 19-28 months after either cyclic or linear Gd agent. RESULTS: There was no change in T1-weighted signal intensity between the baseline contrast MRI and unenhanced MRI on re-examination in any of the studied 10 brain regions with either Gd agent suggesting undetectable Gd brain retention. DISCUSSION: Gd does not accumulate in brains of older individuals with a BBB breakdown in the hippocampus. Thus, Gd agents can be used without risk of brain retention within a ∼2-year follow-up to study BBB in the aging human brain in relation to cognition and/or other pathologies.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Disfunção Cognitiva/patologia , Gadolínio , Hipocampo/patologia , Imageamento por Ressonância Magnética , Adulto , Idoso , Encéfalo/patologia , Meios de Contraste/administração & dosagem , Feminino , Gadolínio/análise , Gadolínio/uso terapêutico , Humanos , Masculino , Testes Neuropsicológicos/estatística & dados numéricos
12.
J Neurosci ; 37(22): 5395-5407, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28455369

RESUMO

The complement system, typically associated with innate immunity, is emerging as a key controller of nonimmune systems including in development, with recent studies linking complement mutations with neurodevelopmental disease. A key effector of the complement response is the activation fragment C5a, which, through its receptor C5aR1, is a potent driver of inflammation. Surprisingly, C5aR1 is also expressed during early mammalian embryogenesis; however, no clearly defined function is ascribed to C5aR1 in development. Here we demonstrate polarized expression of C5aR1 on the apical surface of mouse embryonic neural progenitor cells in vivo and on human embryonic stem cell-derived neural progenitors. We also show that signaling of endogenous C5a during mouse embryogenesis drives proliferation of neural progenitor cells within the ventricular zone and is required for normal brain histogenesis. C5aR1 signaling in neural progenitors was dependent on atypical protein kinase C ζ, a mediator of stem cell polarity, with C5aR1 inhibition reducing proliferation and symmetric division of apical neural progenitors in human and mouse models. C5aR1 signaling was shown to promote the maintenance of cell polarity, with exogenous C5a increasing the retention of polarized rosette architecture in human neural progenitors after physical or chemical disruption. Transient inhibition of C5aR1 during neurogenesis in developing mice led to behavioral abnormalities in both sexes and MRI-detected brain microstructural alterations, in studied males, demonstrating a requirement of C5aR1 signaling for appropriate brain development. This study thus identifies a functional role for C5a-C5aR1 signaling in mammalian neurogenesis and provides mechanistic insight into recently identified complement gene mutations and brain disorders.SIGNIFICANCE STATEMENT The complement system, traditionally known as a controller of innate immunity, now stands as a multifaceted signaling family with a broad range of physiological actions. These include roles in the brain, where complement activation is associated with diseases, including epilepsy and schizophrenia. This study has explored complement regulation of neurogenesis, identifying a novel relationship between the complement activation peptide C5a and the neural progenitor proliferation underpinning formation of the mammalian brain. C5a was identified as a regulator of cell polarity, with inhibition of C5a receptors during embryogenesis leading to abnormal brain development and behavioral deficits. This work demonstrates mechanisms through which dysregulation of complement causes developmental disease and highlights the potential risk of complement inhibition for therapeutic purposes in pregnancy.


Assuntos
Células-Tronco Embrionárias/fisiologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Proteína Quinase C/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Animais , Polaridade Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Ativação do Complemento/fisiologia , Células-Tronco Embrionárias/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
Neuroimage ; 172: 217-227, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29414494

RESUMO

Exploring neuroanatomical sex differences using a multivariate statistical learning approach can yield insights that cannot be derived with univariate analysis. While gross differences in total brain volume are well-established, uncovering the more subtle, regional sex-related differences in neuroanatomy requires a multivariate approach that can accurately model spatial complexity as well as the interactions between neuroanatomical features. Here, we developed a multivariate statistical learning model using a support vector machine (SVM) classifier to predict sex from MRI-derived regional neuroanatomical features from a single-site study of 967 healthy youth from the Philadelphia Neurodevelopmental Cohort (PNC). Then, we validated the multivariate model on an independent dataset of 682 healthy youth from the multi-site Pediatric Imaging, Neurocognition and Genetics (PING) cohort study. The trained model exhibited an 83% cross-validated prediction accuracy, and correctly predicted the sex of 77% of the subjects from the independent multi-site dataset. Results showed that cortical thickness of the middle occipital lobes and the angular gyri are major predictors of sex. Results also demonstrated the inferential benefits of going beyond classical regression approaches to capture the interactions among brain features in order to better characterize sex differences in male and female youths. We also identified specific cortical morphological measures and parcellation techniques, such as cortical thickness as derived from the Destrieux atlas, that are better able to discriminate between males and females in comparison to other brain atlases (Desikan-Killiany, Brodmann and subcortical atlases).


Assuntos
Encéfalo/anatomia & histologia , Interpretação de Imagem Assistida por Computador/métodos , Caracteres Sexuais , Máquina de Vetores de Suporte , Adolescente , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
14.
Magn Reson Med ; 78(6): 2170-2184, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28191681

RESUMO

PURPOSE: Several diffusion-weighted MRI techniques have been developed and validated during the past 2 decades. While offering various neuroanatomical inferences, these techniques differ in their proposed optimal acquisition design, preventing clinicians and researchers benefiting from all potential inference methods, particularly when limited time is available. This study reports an optimal design that enables for a time-efficient diffusion-weighted MRI acquisition scheme at 7 Tesla. The primary audience of this article is the typical end user, interested in diffusion-weighted microstructural imaging at 7 Tesla. METHODS: We tested b-values in the range of 700 to 3000 s/mm2 with different number of angular diffusion-encoding samples, against a data-driven "gold standard." RESULTS: The suggested design is a protocol with b-values of 1000 and 2500 s/mm2 , with 25 and 50 samples, uniformly distributed over two shells. We also report a range of protocols in which the results of fitting microstructural models to the diffusion-weighted data had high correlation with the gold standard. CONCLUSION: We estimated minimum acquisition requirements that enable diffusion tensor imaging, higher angular resolution diffusion-weighted imaging, neurite orientation dispersion, and density imaging and white matter tract integrity across whole brain with isotropic resolution of 1.8 mm in less than 11 min. Magn Reson Med 78:2170-2184, 2017. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Imagem de Difusão por Ressonância Magnética , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Simulação por Computador , Imagem de Tensor de Difusão , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Óptica e Fotônica , Reprodutibilidade dos Testes , Substância Branca/diagnóstico por imagem , Adulto Jovem
15.
NMR Biomed ; 29(3): 293-308, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26748471

RESUMO

Diffusion-weighted MRI is an important tool for in vivo and non-invasive axon morphometry. The ActiveAx technique utilises an optimised acquisition protocol to infer orientationally invariant indices of axon diameter and density by fitting a model of white matter to the acquired data. In this study, we investigated the factors that influence the sensitivity to small-diameter axons, namely the gradient strength of the acquisition protocol and the model fitting routine. Diffusion-weighted ex. vivo images of the mouse brain were acquired using 16.4-T MRI with high (Gmax of 300 mT/m) and ultra-high (Gmax of 1350 mT/m) gradient strength acquisitions. The estimated axon diameter indices of the mid-sagittal corpus callosum were validated using electron microscopy. In addition, a dictionary-based fitting routine was employed and evaluated. Axon diameter indices were closer to electron microscopy measures when higher gradient strengths were employed. Despite the improvement, estimated axon diameter indices (a lower bound of ~ 1.8 µm) remained higher than the measurements obtained using electron microscopy (~1.2 µm). We further observed that limitations of pulsed gradient spin echo (PGSE) acquisition sequences and axonal dispersion could also influence the sensitivity with which axon diameter indices could be estimated. Our results highlight the influence of acquisition protocol, tissue model and model fitting, in addition to gradient strength, on advanced microstructural diffusion-weighted imaging techniques. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.


Assuntos
Axônios/metabolismo , Imagem de Difusão por Ressonância Magnética/métodos , Animais , Axônios/ultraestrutura , Simulação por Computador , Corpo Caloso/ultraestrutura , Masculino , Camundongos Endogâmicos C57BL , Modelos Teóricos , Neuroglia/metabolismo , Neuroglia/ultraestrutura , Marcadores de Spin
16.
Hum Brain Mapp ; 36(9): 3687-702, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26096639

RESUMO

We examined whether quantitative density measures of cerebral tissue consistent with histology can be obtained from diffusion magnetic resonance imaging (MRI). By incorporating prior knowledge of myelin and cell membrane densities, absolute tissue density values were estimated from relative intracellular and intraneurite density values obtained from diffusion MRI. The NODDI (neurite orientation distribution and density imaging) technique, which can be applied clinically, was used. Myelin density estimates were compared with the results of electron and light microscopy in ex vivo mouse brain and with published density estimates in a healthy human brain. In ex vivo mouse brain, estimated myelin densities in different subregions of the mouse corpus callosum were almost identical to values obtained from electron microscopy (diffusion MRI: 42 ± 6%, 36 ± 4%, and 43 ± 5%; electron microscopy: 41 ± 10%, 36 ± 8%, and 44 ± 12% in genu, body and splenium, respectively). In the human brain, good agreement was observed between estimated fiber density measurements and previously reported values based on electron microscopy. Estimated density values were unaffected by crossing fibers.


Assuntos
Corpo Caloso/metabolismo , Imagem de Difusão por Ressonância Magnética/métodos , Bainha de Mielina/metabolismo , Adulto , Animais , Anisotropia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Modelos Teóricos , Substância Branca/metabolismo
17.
Biol Psychiatry Glob Open Sci ; 3(3): 374-385, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37519474

RESUMO

Background: Traumatic brain injury (TBI) can alter brain structure and lead to onset of persistent neuropsychological symptoms. This study investigates the relationship between brain injury and psychological distress after mild TBI using multimodal magnetic resonance imaging. Methods: A total of 89 patients with mild TBI from the TRACK-TBI (Transforming Research and Clinical Knowledge in Traumatic Brain Injury) pilot study were included. Subscales of the Brief Symptoms Inventory 18 for depression, anxiety, and somatization were used as outcome measures of psychological distress approximately 6 months after the traumatic event. Glasgow Coma Scale scores were used to evaluate recovery. Magnetic resonance imaging data were acquired within 2 weeks after injury. Perivascular spaces (PVSs) were segmented using an enhanced PVS segmentation method, and the volume fraction was calculated for the whole brain and white matter regions. Cortical thickness and gray matter structures volumes were calculated in FreeSurfer; diffusion imaging indices and multifiber tracts were extracted using the Quantitative Imaging Toolkit. The analysis was performed considering age, sex, intracranial volume, educational attainment, and improvement level upon discharge as covariates. Results: PVS fractions in the posterior cingulate, fusiform, and postcentral areas were found to be associated with somatization symptoms. Depression, anxiety, and somatization symptoms were associated with the cortical thickness of the frontal-opercularis and occipital pole, putamen and amygdala volumes, and corticospinal tract and superior thalamic radiation. Analyses were also performed on the two hemispheres separately to explore lateralization. Conclusions: This study shows how PVS, cortical, and microstructural changes can predict the onset of depression, anxiety, and somatization symptoms in patients with mild TBI.

18.
Sleep Med ; 111: 170-179, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37782994

RESUMO

The magnetic resonance imaging (MRI) visible perivascular space (PVS) reportedly clears amyloid-ß and metabolic waste during sleep. Previous studies reported an association between sleep and the PVS in small vessel disease, traumatic brain injury, and Alzheimer's disease. However, this relationship in a healthy cohort is still unclear. Here, we used the Human Connectome Project Aging dataset to analyze the relationship between sleep and the PVS in cognitively healthy adults across the aging continuum. We measured sleep parameters using the self-reported Pittsburgh Sleep Quality Index questionnaire. We found that older adults who had better sleep quality and sleep efficiency presented with a larger PVS volume fraction in the basal ganglia (BG). However, sleep measures were not associated with PVS volume fraction in the centrum semiovale (CSO). In addition, we found that body mass index (BMI) influenced the BG-PVS across middle-aged and older participants. In the entire cognitively healthy cohort, the effect of sleep quality on PVS volume fraction was mediated by BMI. However, BMI did not influence this effect in the older cohort. Furthermore, there are significant differences in PVS volume fraction across racial/ethnic cohorts. In summary, the effect of sleep on the PVS volume alteration was different in the middle-aged adults and older adults.


Assuntos
Lesões Encefálicas Traumáticas , Sistema Glinfático , Pessoa de Meia-Idade , Humanos , Idoso , Envelhecimento , Imageamento por Ressonância Magnética/métodos , Sono
19.
Neuroimage Clin ; 38: 103383, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36965457

RESUMO

White matter hyperintensities (WMHs) frequently occur in Alzheimer's Disease (AD) and have a contribution from ischemia, though their relationship with ß-amyloid and cardiovascular risk factors (CVRFs) is not completely understood. We used AT classification to categorize individuals based on their ß-amyloid and tau pathologies, then assessed the effects of ß-amyloid and tau on WMH volume and number. We then determined regions in which ß-amyloid and WMH accumulation were related. Last, we analyzed the effects of various CVRFs on WMHs. As secondary analyses, we observed effects of age and sex differences, atrophy, cognitive scores, and APOE genotype. PET, MRI, FLAIR, demographic, and cardiovascular health data was collected from the Alzheimer's Disease Neuroimaging Initiative (ADNI-3) (N = 287, 48 % male). Participants were categorized as A + and T + if their Florbetapir SUVR and Flortaucipir SUVR were above 0.79 and 1.25, respectively. WMHs were mapped on MRI using a deep convolutional neural network (Sepehrband et al., 2020). CVRF scores were based on history of hypertension, systolic and diastolic blood pressure, pulse rate, respiration rate, BMI, and a cumulative score with 6 being the maximum score. Regression models and Pearson correlations were used to test associations and correlations between variables, respectively, with age, sex, years of education, and scanner manufacturer as covariates of no interest. WMH volume percent was significantly associated with global ß-amyloid (r = 0.28, p < 0.001), but not tau (r = 0.05, p = 0.25). WMH volume percent was higher in individuals with either A + or T + pathology compared to controls, particularly within in the A+/T + group (p = 0.007, Cohen's d = 0.4, t = -2.5). Individual CVRFs nor cumulative CVRF scores were associated with increased WMH volume. Finally, the regions where ß-amyloid and WMH count were most positively associated were the middle temporal region in the right hemisphere (r = 0.18, p = 0.002) and the fusiform region in the left hemisphere (r = 0.017, p = 0.005). ß-amyloid and WMH have a clear association, though the mechanism facilitating this association is still not fully understood. The associations found between ß-amyloid and WMH burden emphasizes the relationship between ß-amyloid and vascular lesion formation while factors like CVRFs, age, and sex affect AD development through various mechanisms. These findings highlight potential causes and mechanisms of AD as targets for future preventions and treatments. Going forward, a larger emphasis may be placed on ß-amyloid's vascular effects and the implications of impaired brain clearance in AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Substância Branca , Humanos , Masculino , Feminino , Doença de Alzheimer/patologia , Substância Branca/patologia , Proteínas tau/metabolismo , Disfunção Cognitiva/patologia , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas , Amiloide
20.
Neuroimage Clin ; 37: 103318, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36630864

RESUMO

The dentate gyrus (DG) is an integral portion of the hippocampal formation, and it is composed of three layers. Quantitative magnetic resonance (MR) imaging has the capability to map brain tissue microstructural properties which can be exploited to investigate neurodegeneration in Alzheimer's disease (AD). However, assessing subtle pathological changes within layers requires high resolution imaging and histological validation. In this study, we utilized a 16.4 Tesla scanner to acquire ex vivo multi-parameter quantitative MRI measures in human specimens across the layers of the DG. Using quantitative diffusion tensor imaging (DTI) and multi-parameter MR measurements acquired from AD (N = 4) and cognitively normal control (N = 6) tissues, we performed correlation analyses with histological measurements. Here, we found that quantitative MRI measures were significantly correlated with neurofilament and phosphorylated Tau density, suggesting sensitivity to layer-specific changes in the DG of AD tissues.


Assuntos
Doença de Alzheimer , Imagem de Tensor de Difusão , Humanos , Imagem de Tensor de Difusão/métodos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Imageamento por Ressonância Magnética/métodos , Encéfalo/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Giro Denteado/diagnóstico por imagem , Giro Denteado/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA