Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Biochemistry (Mosc) ; 89(2): 241-256, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38622093

RESUMO

Genes of putative reductases of α,ß-unsaturated carboxylic acids are abundant among anaerobic and facultatively anaerobic microorganisms, yet substrate specificity has been experimentally verified for few encoded proteins. Here, we co-produced in Escherichia coli a heterodimeric protein of the facultatively anaerobic marine bacterium Vibrio ruber (GenBank SJN56019 and SJN56021; annotated as NADPH azoreductase and urocanate reductase, respectively) with Vibrio cholerae flavin transferase. The isolated protein (named Crd) consists of the sjn56021-encoded subunit CrdB (NADH:flavin, FAD binding 2, and FMN bind domains) and an additional subunit CrdA (SJN56019, a single NADH:flavin domain) that interact via their NADH:flavin domains (Alphafold2 prediction). Each domain contains a flavin group (three FMNs and one FAD in total), one of the FMN groups being linked covalently by the flavin transferase. Crd readily reduces cinnamate, p-coumarate, caffeate, and ferulate under anaerobic conditions with NADH or methyl viologen as the electron donor, is moderately active against acrylate and practically inactive against urocanate and fumarate. Cinnamates induced Crd synthesis in V. ruber cells grown aerobically or anaerobically. The Crd-catalyzed reduction started by NADH demonstrated a time lag of several minutes, suggesting a redox regulation of the enzyme activity. The oxidized enzyme is inactive, which apparently prevents production of reactive oxygen species under aerobic conditions. Our findings identify Crd as a regulated NADH-dependent cinnamate reductase, apparently protecting V. ruber from (hydroxy)cinnamate poisoning.


Assuntos
Oxirredutases , Vibrio , Oxirredutases/metabolismo , NAD/metabolismo , Cinamatos , Oxirredução , Vibrio/genética , Vibrio/metabolismo , NADH NADPH Oxirredutases/química , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , NADH Desidrogenase/metabolismo , Flavinas/química , Transferases , Flavina-Adenina Dinucleotídeo/metabolismo
2.
Biochemistry (Mosc) ; 89(4): 701-710, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38831506

RESUMO

Many microorganisms are capable of anaerobic respiration in the absence of oxygen, by using different organic compounds as terminal acceptors in electron transport chain. We identify here an anaerobic respiratory chain protein responsible for acrylate reduction in the marine bacterium Shewanella woodyi. When the periplasmic proteins of S. woodyi were separated by ion exchange chromatography, acrylate reductase activity copurified with an ArdA protein (Swoo_0275). Heterologous expression of S. woodyi ardA gene (swoo_0275) in Shewanella oneidensis MR-1 cells did not result in the appearance in them of periplasmic acrylate reductase activity, but such activity was detected when the ardA gene was co-expressed with an ardB gene (swoo_0276). Together, these genes encode flavocytochrome c ArdAB, which is thus responsible for acrylate reduction in S. woodyi cells. ArdAB was highly specific for acrylate as substrate and reduced only methacrylate (at a 22-fold lower rate) among a series of other tested 2-enoates. In line with these findings, acrylate and methacrylate induced ardA gene expression in S. woodyi under anaerobic conditions, which was accompanied by the appearance of periplasmic acrylate reductase activity. ArdAB-linked acrylate reduction supports dimethylsulfoniopropionate-dependent anaerobic respiration in S. woodyi and, possibly, other marine bacteria.


Assuntos
Acrilatos , Shewanella , Shewanella/enzimologia , Shewanella/genética , Shewanella/metabolismo , Transporte de Elétrons , Acrilatos/metabolismo , Anaerobiose , Oxirredutases/metabolismo , Oxirredutases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
3.
J Biol Chem ; 298(5): 101914, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398352

RESUMO

N-terminal acetylation is widespread in the eukaryotic proteome but in bacteria is restricted to a small number of proteins mainly involved in translation. It was long known that elongation factor Tu (EF-Tu) is N-terminally acetylated, whereas the enzyme responsible for this process was unclear. Here, we report that RimI acetyltransferase, known to modify ribosomal protein S18, is likewise responsible for N-acetylation of the EF-Tu. With the help of inducible tufA expression plasmid, we demonstrated that the acetylation does not alter the stability of EF-Tu. Binding of aminoacyl tRNA to the recombinant EF-Tu in vitro was found to be unaffected by the acetylation. At the same time, with the help of fast kinetics methods, we demonstrate that an acetylated variant of EF-Tu more efficiently accelerates A-site occupation by aminoacyl-tRNA, thus increasing the efficiency of in vitro translation. Finally, we show that a strain devoid of RimI has a reduced growth rate, expanded to an evolutionary timescale, and might potentially promote conservation of the acetylation mechanism of S18 and EF-Tu. This study increased our understanding of the modification of bacterial translation apparatus.


Assuntos
Acetiltransferases , Bactérias/metabolismo , Fator Tu de Elongação de Peptídeos , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Guanosina Trifosfato/metabolismo , Cinética , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Proteínas Ribossômicas , Ribossomos/metabolismo
4.
Biochemistry (Mosc) ; 88(12): 2094-2106, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38462453

RESUMO

Neutrophils play a dual role in protecting the body. They are able to penetrate infected tissues and destroy pathogens there by releasing aggressive bactericidal substances. While into the surrounding tissues, the aggressive products secreted by neutrophils initiate development of inflammatory processes. Invasion of neutrophils into tissues is observed during the development of pneumonia in the patients with lung diseases of various etiologies, including acute respiratory distress syndrome caused by coronavirus disease. Synthetic corticosteroid hormone dexamethasone has a therapeutic effect in treatment of lung diseases, including reducing mortality in the patients with severe COVID-19. The acute (short-term) effect of dexamethasone on neutrophil adhesion to fibrinogen and concomitant secretion was studied. Dexamethasone did not affect either attachment of neutrophils to the substrate or their morphology. Production of reactive oxygen species (ROS) and nitric oxide (NO) by neutrophils during adhesion also did not change in the presence of dexamethasone. Dexamethasone stimulated release of metalloproteinases in addition to the proteins secreted by neutrophils during adhesion under control conditions, and selectively stimulated release of free amino acid hydroxylysine, a product of lysyl hydroxylase. Metalloproteinases play a key role and closely interact with lysyl hydroxylase in the processes of modification of the extracellular matrix. Therapeutic effect of dexamethasone could be associated with its ability to reorganize extracellular matrix in the tissues by changing composition of the neutrophil secretions, which could result in the improved gas exchange in the patients with severe lung diseases.


Assuntos
Pneumopatias , Neutrófilos , Humanos , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/farmacologia , Dexametasona/farmacologia , Dexametasona/metabolismo , Metaloproteases/metabolismo , Metaloproteases/farmacologia , Pneumopatias/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(40): 24936-24946, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958672

RESUMO

While near-cognate codons are frequently used for translation initiation in eukaryotes, their efficiencies are usually low (<10% compared to an AUG in optimal context). Here, we describe a rare case of highly efficient near-cognate initiation. A CUG triplet located in the 5' leader of POLG messenger RNA (mRNA) initiates almost as efficiently (∼60 to 70%) as an AUG in optimal context. This CUG directs translation of a conserved 260-triplet-long overlapping open reading frame (ORF), which we call POLGARF (POLG Alternative Reading Frame). Translation of a short upstream ORF 5' of this CUG governs the ratio between POLG (the catalytic subunit of mitochondrial DNA polymerase) and POLGARF synthesized from a single POLG mRNA. Functional investigation of POLGARF suggests a role in extracellular signaling. While unprocessed POLGARF localizes to the nucleoli together with its interacting partner C1QBP, serum stimulation results in rapid cleavage and secretion of a POLGARF C-terminal fragment. Phylogenetic analysis shows that POLGARF evolved ∼160 million y ago due to a mammalian-wide interspersed repeat (MIR) transposition into the 5' leader sequence of the mammalian POLG gene, which became fixed in placental mammals. This discovery of POLGARF unveils a previously undescribed mechanism of de novo protein-coding gene evolution.


Assuntos
Códon de Iniciação/genética , DNA Polimerase gama/genética , Filogenia , Biossíntese de Proteínas/genética , Animais , Sequência de Bases , Proteínas de Transporte/genética , Feminino , Humanos , Proteínas Mitocondriais/genética , Fases de Leitura Aberta/genética , Gravidez , RNA Mensageiro/genética , Fases de Leitura/genética
6.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38003717

RESUMO

Soluble chaperones residing in the endoplasmic reticulum (ER) play vitally important roles in folding and quality control of newly synthesized proteins that transiently pass through the ER en route to their final destinations. These soluble residents of the ER are themselves endowed with an ER retrieval signal that enables the cell to bring the escaped residents back from the Golgi. Here, by using purified proteins, we showed that Nicotiana tabacum phytaspase, a plant aspartate-specific protease, introduces two breaks at the C-terminus of the N. tabacum ER resident calreticulin-3. These cleavages resulted in removal of either a dipeptide or a hexapeptide from the C-terminus of calreticulin-3 encompassing part or all of the ER retrieval signal. Consistently, expression of the calreticulin-3 derivative mimicking the phytaspase cleavage product in Nicotiana benthamiana cells demonstrated loss of the ER accumulation of the protein. Notably, upon its escape from the ER, calreticulin-3 was further processed by an unknown protease(s) to generate the free N-terminal (N) domain of calreticulin-3, which was ultimately secreted into the apoplast. Our study thus identified a specific proteolytic enzyme capable of precise detachment of the ER retrieval signal from a plant ER resident protein, with implications for the further fate of the escaped resident.


Assuntos
Calreticulina , Nicotiana , Calreticulina/metabolismo , Nicotiana/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Plantas/metabolismo , Peptídeo Hidrolases/metabolismo
7.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108298

RESUMO

Primary open-angle glaucoma (POAG) is a frequent blindness-causing neurodegenerative disorder characterized by optic nerve and retinal ganglion cell damage most commonly due to a chronic increase in intraocular pressure. The preservation of visual function in patients critically depends on the timeliness of detection and treatment of the disease, which is challenging due to its asymptomatic course at early stages and lack of objective diagnostic approaches. Recent studies revealed that the pathophysiology of glaucoma includes complex metabolomic and proteomic alterations in the eye liquids, including tear fluid (TF). Although TF can be collected by a non-invasive procedure and may serve as a source of the appropriate biomarkers, its multi-omics analysis is technically sophisticated and unsuitable for clinical practice. In this study, we tested a novel concept of glaucoma diagnostics based on the rapid high-performance analysis of the TF proteome by differential scanning fluorimetry (nanoDSF). An examination of the thermal denaturation of TF proteins in a cohort of 311 ophthalmic patients revealed typical profiles, with two peaks exhibiting characteristic shifts in POAG. Clustering of the profiles according to peaks maxima allowed us to identify glaucoma in 70% of cases, while the employment of artificial intelligence (machine learning) algorithms reduced the amount of false-positive diagnoses to 13.5%. The POAG-associated alterations in the core TF proteins included an increase in the concentration of serum albumin, accompanied by a decrease in lysozyme C, lipocalin-1, and lactotransferrin contents. Unexpectedly, these changes were not the only factor affecting the observed denaturation profile shifts, which considerably depended on the presence of low-molecular-weight ligands of tear proteins, such as fatty acids and iron. Overall, we recognized the TF denaturation profile as a novel biomarker of glaucoma, which integrates proteomic, lipidomic, and metallomic alterations in tears, and monitoring of which could be adapted for rapid non-invasive screening of the disease in a clinical setting.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Humanos , Glaucoma de Ângulo Aberto/tratamento farmacológico , Proteômica/métodos , Inteligência Artificial , Glaucoma/diagnóstico , Glaucoma/complicações , Olho/metabolismo , Pressão Intraocular , Biomarcadores/metabolismo
8.
Appl Environ Microbiol ; 88(11): e0051922, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35612301

RESUMO

Bacteria coping with oxygen deficiency use alternative terminal electron acceptors for NADH regeneration, particularly fumarate. Fumarate is reduced by the FAD_binding_2 domain of cytoplasmic fumarate reductase in many bacteria. The variability of the primary structure of this domain in homologous proteins suggests the existence of reducing activities with different specificities. Here, we produced and characterized one such protein encoded in the Vibrio harveyi genome (GenBank ID: AIV07243) and found it to be a specific NADH:acrylate oxidoreductase (ARD). This previously unknown enzyme is formed by the OYE-like, FMN_bind, and FAD_binding_2 domains and contains covalently bound flavin mononucleotide (FMN) and noncovalently bound flavin adenine dinucleotide (FAD) and FMN in a ratio of 1:1:1. The covalently bound FMN is absolutely required for activity and is attached by the specific flavin transferase, ApbE, to the FMN_bind domain. Quantitative reverse transcription PCR (RT-qPCR) and activity measurements indicated dramatic stimulation of ARD biosynthesis by acrylate in the V. harveyi cells grown aerobically. In contrast, the ard gene expression in the cells grown anaerobically without acrylate was higher than that in aerobic cultures and increased only 2-fold in the presence of acrylate. These findings suggest that the principal role of ARD in Vibrio is energy-saving detoxification of acrylate coming from the environment. IMPORTANCE The benefits of the massive genomic information accumulated in recent years for biological sciences have been limited by the lack of data on the function of most gene products. Approximately half of the known prokaryotic genes are annotated as "proteins with unknown functions," and many other genes are annotated incorrectly. Thus, the functional and structural characterization of the products of such genes, including identification of all existing enzymatic activities, is a pressing issue in modern biochemistry. In this work, we have shown that the product of the V. harveyi ard gene exhibits a yet-undescribed NADH:acrylate oxidoreductase activity. This activity may allow acrylate detoxification and its use as a terminal electron acceptor in anaerobic or substrate in aerobic respiration of marine and other bacteria.


Assuntos
Mononucleotídeo de Flavina , Vibrio , Acrilatos , Sequência de Aminoácidos , FMN Redutase/metabolismo , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Fumaratos , NAD/metabolismo , NADH Desidrogenase/metabolismo , NADH NADPH Oxirredutases/metabolismo , Vibrio/metabolismo
9.
Cell Microbiol ; 23(6): e13322, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33629465

RESUMO

Influenza A viruses contain two S-acylated proteins, the ion channel M2 and the glycoprotein hemagglutinin (HA). Acylation of the latter is essential for virus replication. Here we analysed the expression of each of the 23 members of the family of ZDHHC acyltransferases in human airway cells, the site of virus replication. RT-PCR revealed that every ZDHHC acyltransferase (except ZDHHC19) is expressed in A549 and Calu cells. Interestingly, expression of one ZDHHC, ZDHHC22, is upregulated in virus-infected cells; this effect is more pronounced after infection with an avian compared to a human virus strain. The viral protein NS1 triggers ZDHHC22 expression in transfected cells, whereas recombinant viruses lacking a functional NS1 gene did not cause ZDHHC22 upregulation. CRISPR/Cas9 technology was then used to knock-out the ZDHHC22 gene in A549 cells. However, acylation of M2 and HA was not reduced, as analysed for intracellular HA and M2 and the stoichiometry of S-acylation of HA incorporated into virus particles did not change according to MALDI-TOF mass spectrometry analysis. Comparative mass spectrometry of palmitoylated proteins in wt and ΔZDHHC22 cells identified 25 potential substrates of ZDHHC22 which might be involved in virus replication.


Assuntos
Carnitina O-Palmitoiltransferase/genética , Vírus da Influenza A/fisiologia , Proteínas de Membrana/genética , Regulação para Cima , Proteínas não Estruturais Virais/genética , Células A549 , Acilação , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Cães , Técnicas de Inativação de Genes , Humanos , Células Madin Darby de Rim Canino , Replicação Viral
10.
Mol Cell ; 56(4): 531-40, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25306919

RESUMO

We demonstrate that the antibiotic amicoumacin A (AMI) is a potent inhibitor of protein synthesis. Resistance mutations in helix 24 of the 16S rRNA mapped the AMI binding site to the small ribosomal subunit. The crystal structure of bacterial ribosome in complex with AMI solved at 2.4 Å resolution revealed that the antibiotic makes contacts with universally conserved nucleotides of 16S rRNA in the E site and the mRNA backbone. Simultaneous interactions of AMI with 16S rRNA and mRNA and the in vivo experimental evidence suggest that it may inhibit the progression of the ribosome along mRNA. Consistent with this proposal, binding of AMI interferes with translocation in vitro. The inhibitory action of AMI can be partly compensated by mutations in the translation elongation factor G.


Assuntos
Antibacterianos/química , Cumarínicos/química , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/química , Estabilidade de RNA , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação , Cumarínicos/farmacologia , Cristalografia por Raios X , Farmacorresistência Bacteriana , Escherichia coli , Testes de Sensibilidade Microbiana , Modelos Moleculares , Fator G para Elongação de Peptídeos/genética , Inibidores da Síntese de Proteínas/farmacologia , RNA Mensageiro/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/química , Staphylococcus aureus/genética , Thermus thermophilus
11.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35806001

RESUMO

Wheat gliadins contain a large amount of glutamine- and proline-rich peptides which are not hydrolyzed by human digestive peptidases and can cause autoimmune celiac disease and other forms of gluten intolerance in predisposed people. Peptidases that efficiently cleave such immunogenic peptides can be used in enzyme therapy. The stored product insect pest Tribolium castaneum efficiently hydrolyzes gliadins. The main digestive peptidase of T. castaneum is cathepsin L, which is from the papain C1 family with post-glutamine cleavage activity. We describe the isolation and characterization of T. castaneum recombinant procathepsin L (rpTcCathL1, NP_001164001), which was expressed in Pichia pastoris cells. The activation of the proenzyme was conducted by autocatalytic processing. The effects of pH and proenzyme concentration in the reaction mixture on the processing were studied. The mature enzyme retained high activity in the pH range from 5.0 to 9.0 and displayed high pH-stability from 4.0 to 8.0 at 20 °C. The enzyme was characterized according to electrophoretic mobility under native conditions, activity and stability at various pH values, a sensitivity to various inhibitors, and substrate specificity, and its hydrolytic effect on 8-, 10-, 26-, and 33-mer immunogenic gliadins peptides was demonstrated. Our results show that rTcCathL1 is an effective peptidase that can be used to develop a drug for the enzyme therapy of various types of gluten intolerance.


Assuntos
Doença Celíaca , Tribolium , Animais , Catepsina L/genética , Precursores Enzimáticos , Gliadina , Glutamina , Humanos , Hidrólise , Peptídeo Hidrolases , Peptídeos
12.
Molecules ; 27(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35268835

RESUMO

Features of the biochemical adaptations of alkaliphilic fungi to exist in extreme environments could promote the production of active antibiotic compounds with the potential to control microorganisms, causing infections associated with health care. Thirty-eight alkaliphilic and alkalitolerant Emericellopsis strains (E. alkalina, E. cf. maritima, E. cf. terricola, Emericellopsis sp.) isolated from different saline soda soils and belonging to marine, terrestrial, and soda soil ecological clades were investigated for emericellipsin A (EmiA) biosynthesis, an antifungal peptaibol previously described for Emericellopsis alkalina. The analysis of the Emericellopsis sp. strains belonging to marine and terrestrial clades from chloride soils revealed another novel form with a mass of 1032.7 Da, defined by MALDI-TOF Ms/Ms spectrometers, as the EmiA lacked a hydroxyl (dEmiA). EmiA displayed strong inhibitory effects on cell proliferation and viability of HCT 116 cells in a dose- and time-dependent manners and induced apoptosis.


Assuntos
Antifúngicos
13.
RNA ; 25(7): 757-767, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31010886

RESUMO

Poly(rC)-binding protein 2 (PCBP2, hnRNP E2) is one of the most abundant RNA-binding proteins in mammalian cells. In humans, it exists in seven isoforms, which are assumed to play similar roles in cells. The protein is shown to bind 3'-untranslated regions (3'-UTRs) of many mRNAs and regulate their translation and/or stability, but nothing is known about the functional consequences of PCBP2 binding to 5'-UTRs. Here we show that the PCBP2 isoform f interacts with the 5'-UTRs of mRNAs encoding eIF4G2 (a translation initiation factor with a yet unknown mechanism of action, also known as DAP5) and Cyclin I, and inhibits their translation in vitro and in cultured cells, while the PCBP2 isoform e only affects Cyclin I translation. Furthermore, eIF4G2 participates in a cap-dependent translation of the PCBP2 mRNA. Thus, PCBP2 and eIF4G2 seem to regulate one another's expression via a novel type of feedback loop formed by the translation initiation factor and the RNA-binding protein.


Assuntos
Regiões 5' não Traduzidas/genética , Fator de Iniciação Eucariótico 4G/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Células Cultivadas , Fator de Iniciação Eucariótico 4G/metabolismo , Humanos , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
14.
Drug Dev Res ; 82(8): 1217-1226, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34060112

RESUMO

The receptor for advanced glycation end products (RAGE) plays an essential role in Alzheimer's disease (AD). We previously demonstrated that a fragment (60-76) of RAGE improved the memory of olfactory bulbectomized (OBX) and Tg 5 × FAD mice - animal models of AD. The peptide analog (60-76) with protected N- and C-terminal groups was more active than the free peptide in Tg 5 × FAD mice. This study investigated proteolytic cleavage of the RAGE fragment (60-76) and its C- and N-terminally modified analog by blood serum using HPLC and mass spectrometry. The modified peptide was proteolyzed slower than the free peptide. Degrading the protected analog resulted in shortened fragments with memory-enhancing effects, whereas the free peptide yielded inactive fragments. After administering the different peptides to OBX mice, their performance in a spatial memory task revealed that the effective dose of the modified peptide was five times lower than that of the free peptide. HPLC and mass spectrometry analysis of the proteolytic products allowed us to clarify the differences in the neuroprotective activity conferred by administering these two peptides to AD animal models. The current study suggests that the modified RAGE fragment is more promising for the development of anti-AD therapy than its free analog.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Fragmentos de Peptídeos/uso terapêutico , Proteólise , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Masculino , Espectrometria de Massas , Camundongos
15.
Int J Mol Sci ; 22(23)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34884925

RESUMO

Proteolytic enzymes are instrumental in various aspects of plant development, including senescence. This may be due not only to their digestive activity, which enables protein utilization, but also to fulfilling regulatory functions. Indeed, for the largest family of plant serine proteases, subtilisin-like proteases (subtilases), several members of which have been implicated in leaf and plant senescence, both non-specific proteolysis and regulatory protein processing have been documented. Here, we strived to identify the protein partners of phytaspase, a plant subtilase involved in stress-induced programmed cell death that possesses a characteristic aspartate-specific hydrolytic activity and unusual localization dynamics. A proximity-dependent biotin identification approach in Nicotiana benthamiana leaves producing phytaspase fused to a non-specific biotin ligase TurboID was employed. Although the TurboID moiety appeared to be unstable in the apoplast environment, several intracellular candidate protein interactors of phytaspase were identified. These were mainly, though not exclusively, represented by soluble residents of the endoplasmic reticulum, namely endoplasmin, BiP, and calreticulin-3. For calreticultin-3, whose gene is characterized by an enhanced expression in senescing leaves, direct interaction with phytaspase was confirmed in an in vitro binding assay using purified proteins. In addition, an apparent alteration of post-translational modification of calreticultin-3 in phytaspase-overproducing plant cells was observed.


Assuntos
Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Subtilisinas/metabolismo , Biotina/farmacologia , Biotinilação , Calreticulina/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Mapas de Interação de Proteínas
16.
Mol Vis ; 26: 623-640, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32913388

RESUMO

Purpose: Primary open-angle glaucoma (POAG) is a common ocular disease, associated with abnormalities in aqueous humor circulation and an increase in intraocular pressure (IOP), leading to progressive optical neuropathy and loss of vision. POAG pathogenesis includes alterations of the structural properties of the sclera, especially in the optic nerve head area, contributing to the degeneration of the retinal ganglion cells. Abnormal sclera biomechanics hinder adequate compensation of IOP fluctuations, thus aggravating POAG progression. The proteomic basis of biomechanical disorders in glaucomatous sclera remains poorly understood. This study is aimed at revealing alterations in major scleral proteins, associated with POAG, at different stages of the disease and with different IOP conditions. Methods: Samples of sclera were collected from 67 patients with POAG during non-penetrating deep sclerectomy and from nine individuals without POAG. Scleral proteins were extracted with a strong lysis buffer, containing a combination of an ionic detergent, a chaotropic agent, and a disulfide reducing agent, and were separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The major scleral proteins were selected, subjected to in-gel digestion, and identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF)/TOF mass spectrometry (MS), coupled with tandem mass spectrometry (MS/MS). The specific POAG-associated alterations of the selected proteins were analyzed with SDS-PAGE and confirmed with western blotting of the scleral extracts, using the respective antibodies. The group of POAG-associated proteins was analyzed using Gene Ontology and genome-wide association study enrichment and protein-protein interaction network prediction. Results: A total of 11 proteins were identified, among which six proteins, namely, vimentin, angiopoietin-related protein 7, annexin A2, serum amyloid P component, serum albumin, and thrombospondin-4, were found to be upregulated in the sclera of patients with advanced and terminal POAG. In the early stages of the disease, thrombospondin-4 level was, on the contrary, reduced when compared with the control, whereas the concentration of vimentin varied, depending on the IOP level. Moreover, angiopoietin-related protein 7 manifested as two forms, exhibiting opposite behavior: The common 45 kDa form grew with the progression of POAG, whereas the 35 kDa (apparently non-glycosylated) form was absent in the control samples, appeared in patients with early POAG, and decreased in concentration over the course of the disease. Functional bioinformatics analysis linked the POAG-associated proteins with IOP alterations and predicted their secretion into extracellular space and their association with extracellular vesicles and a collagen-containing extracellular matrix. Conclusions: POAG is accompanied by alterations of the scleral proteome, which represent a novel hallmark of the disease and can reflect pathological changes in scleral biochemistry and biomechanics. The potential mechanisms underlying these changes relate mainly to the structure of the extracellular matrix, protein glycosylation, and calcium binding, and may involve fibroblast cytoskeleton regulation, as well as oxidative and inflammatory responses.


Assuntos
Matriz Extracelular/metabolismo , Glaucoma de Ângulo Aberto/metabolismo , Proteoma/metabolismo , Esclera/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas Semelhantes a Angiopoietina/metabolismo , Anexina A2/metabolismo , Proteína de Matriz Oligomérica de Cartilagem/metabolismo , Biologia Computacional , Vesículas Extracelulares/metabolismo , Feminino , Ontologia Genética , Estudo de Associação Genômica Ampla , Glaucoma de Ângulo Aberto/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Mapas de Interação de Proteínas , Proteômica , Esclera/patologia , Albumina Sérica/metabolismo , Componente Amiloide P Sérico/metabolismo , Espectrometria de Massas em Tandem , Regulação para Cima , Vimentina/metabolismo
17.
Microsc Microanal ; 26(2): 297-309, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32036809

RESUMO

Influenza A virus is a serious human pathogen that assembles enveloped virions on the plasma membrane of the host cell. The pleiomorphic morphology of influenza A virus, represented by spherical, elongated, or filamentous particles, is important for the spread of the virus in nature. Using fixative protocols for sample preparation and negative staining electron microscopy, we found that the recombinant A/WSN/33 (H1N1) (rWSN) virus, a strain considered to be strictly spherical, may produce filamentous particles when amplified in the allantoic cavity of chicken embryos. In contrast, the laboratory WSN strain and the rWSN virus amplified in Madin-Darby canine kidney cells exhibited a spherical morphology. Next-generation sequencing (NGS) suggested a rare Ser126Cys substitution in the M1 protein of rWSN, which was confirmed by the mass spectrometric analysis. No structurally relevant substitutions were found by NGS in other proteins of rWSN. Bioinformatics algorithms predicted a neutral structural effect of the Ser126Cys mutation. The mrWSN_M1_126S virus generated after the introduction of the reverse Cys126Ser substitution exhibited a similar host-dependent partially filamentous phenotype. We hypothesize that a shortage of some as-yet-undefined cellular components involved in virion budding and membrane scission may result in the appearance of filamentous particles in the case of usually "nonfilamentous" virus strains.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Proteínas Virais/química , Proteínas Virais/genética , Animais , Linhagem Celular , Galinhas , Biologia Computacional , Cães , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H1N1/ultraestrutura , Vírus da Influenza A/genética , Células Madin Darby de Rim Canino , Mutação , Fenótipo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Vírion
18.
Anal Biochem ; 567: 45-50, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30528915

RESUMO

A method is described for the direct detection of unstable cysteine peptidase activity in polyacrylamide gels after native electrophoresis using new selective fluorogenic peptide substrates, pyroglutamyl-phenylalanyl-alanyl-4-amino-7-methylcoumaride (Glp-Phe-Ala-AMC) and pyroglutamyl-phenylalanyl-alanyl-4-amino-7-trifluoromethyl-coumaride (Glp-Phe-Ala-AFC). The detection limit of the model enzyme papain was 17 pmol (0.29 µg) for Glp-Phe-Ala-AMC and 43 pmol (0.74 µg) for Glp-Phe-Ala-AFC, with increased sensitivity and selectivity compared to the traditional method of protein determination with Coomassie G-250 staining or detection of activity using chromogenic substrates. Using this method, we easily identified the target digestive peptidases of Tenebrio molitor larvae by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analysis. The method offers simplicity, high sensitivity, and selectivity compared to traditional methods for improved identification of unstable cysteine peptidases in multi-component biological samples.


Assuntos
Cisteína Proteases/análise , Corantes Fluorescentes/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Animais , Cisteína Proteases/metabolismo , Corantes Fluorescentes/metabolismo , Larva/enzimologia , Alinhamento de Sequência , Especificidade por Substrato , Tenebrio/enzimologia , Tenebrio/crescimento & desenvolvimento
19.
New Phytol ; 218(3): 1167-1178, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28407256

RESUMO

Peptide hormones are implicated in many important aspects of plant life and are usually synthesized as precursor proteins. In contrast to animals, data for plant peptide hormone maturation are scarce and the specificity of processing enzyme(s) is largely unknown. Here we tested a hypothesis that processing of prosystemin, a precursor of tomato (Solanum lycopersicum) wound hormone systemin, is performed by phytaspases, aspartate-specific proteases of the subtilase family. Following the purification of phytaspase from tomato leaves, two tomato phytaspase genes were identified, the cDNAs were cloned and the recombinant enzymes were obtained after transient expression in Nicotiana benthamiana. The newly identified tomato phytaspases hydrolyzed prosystemin at two aspartate residues flanking the systemin sequence. Site-directed mutagenesis of the phytaspase cleavage sites in prosystemin abrogated not only the phytaspase-mediated processing of the prohormone in vitro, but also the ability of prosystemin to trigger the systemic wound response in vivo. The data show that the prohormone prosystemin requires processing for signal biogenesis and biological activity. The identification of phytaspases as the proteases involved in prosystemin maturation provides insight into the mechanisms of wound signaling in tomato. Our data also suggest a novel role for cell death-related proteases in mediating defense signaling in plants.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Peptídeos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Solanum lycopersicum/metabolismo , Hidrólise , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA