Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(31): 12780-5, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23840067

RESUMO

Hepatic insulin resistance is a principal component of type 2 diabetes, but the cellular and molecular mechanisms responsible for its pathogenesis remain unknown. Recent studies have suggested that saturated fatty acids induce hepatic insulin resistance through activation of the toll-like receptor 4 (TLR-4) receptor in the liver, which in turn transcriptionally activates hepatic ceramide synthesis leading to inhibition of insulin signaling. In this study, we demonstrate that TLR-4 receptor signaling is not directly required for saturated or unsaturated fat-induced hepatic insulin resistance in both TLR-4 antisense oligonucleotide treated and TLR-4 knockout mice, and that ceramide accumulation is not dependent on TLR-4 signaling or a primary event in hepatic steatosis and impairment of insulin signaling. Further, we show that both saturated and unsaturated fats lead to hepatic accumulation of diacylglycerols, activation of PKCε, and impairment of insulin-stimulated IRS-2 signaling. These data demonstrate that saturated fat-induced insulin resistance is independent of TLR-4 activation and ceramides.


Assuntos
Gorduras Insaturadas na Dieta/farmacologia , Fígado Gorduroso/metabolismo , Resistência à Insulina , Fígado/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diglicerídeos/metabolismo , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/patologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Fígado/patologia , Camundongos , Ratos , Ratos Sprague-Dawley
2.
Proc Natl Acad Sci U S A ; 110(5): 1869-74, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23302688

RESUMO

Comparative gene identification 58 (CGI-58) is a lipid droplet-associated protein that promotes the hydrolysis of triglyceride by activating adipose triglyceride lipase. Loss-of-function mutations in CGI-58 in humans lead to Chanarin-Dorfman syndrome, a condition in which triglyceride accumulates in various tissues, including the skin, liver, muscle, and intestines. Therefore, without adequate CGI-58 expression, lipids are stored rather than used for fuel, signaling intermediates, and membrane biosynthesis. CGI-58 knockdown in mice using antisense oligonucleotide (ASO) treatment also leads to severe hepatic steatosis as well as increased hepatocellular diacylglycerol (DAG) content, a well-documented trigger of insulin resistance. Surprisingly, CGI-58 knockdown mice remain insulin-sensitive, seemingly dissociating DAG from the development of insulin resistance. Therefore, we sought to determine the mechanism responsible for this paradox. Hyperinsulinemic-euglycemic clamp studies reveal that the maintenance of insulin sensitivity with CGI-58 ASO treatment could entirely be attributed to protection from lipid-induced hepatic insulin resistance, despite the apparent lipotoxic conditions. Analysis of the cellular compartmentation of DAG revealed that DAG increased in the membrane fraction of high fat-fed mice, leading to PKCε activation and hepatic insulin resistance. However, DAG increased in lipid droplets or lipid-associated endoplasmic reticulum rather than the membrane of CGI-58 ASO-treated mice, and thus prevented PKCε translocation to the plasma membrane and induction of insulin resistance. Taken together, these results explain the disassociation of hepatic steatosis and DAG accumulation from hepatic insulin resistance in CGI-58 ASO-treated mice, and highlight the importance of intracellular compartmentation of DAG in causing lipotoxicity and hepatic insulin resistance.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Diglicerídeos/metabolismo , Retículo Endoplasmático/metabolismo , Resistência à Insulina , Lipídeos/química , Fígado/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Dieta Hiperlipídica , Retículo Endoplasmático/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Immunoblotting , Injeções Intraperitoneais , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/genética , Proteína Quinase C-épsilon/metabolismo , Transporte Proteico/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Endocrinology ; 154(9): 3099-109, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23766126

RESUMO

Fibroblast growth factor 21 (FGF21) is a potent regulator of glucose and lipid metabolism and is currently being pursued as a therapeutic agent for insulin resistance and type 2 diabetes. However, the cellular mechanisms by which FGF21 modifies insulin action in vivo are unclear. To address this question, we assessed insulin action in regular chow- and high-fat diet (HFD)-fed wild-type mice chronically infused with FGF21 or vehicle. Here, we show that FGF21 administration results in improvements in both hepatic and peripheral insulin sensitivity in both regular chow- and HFD-fed mice. This improvement in insulin responsiveness in FGF21-treated HFD-fed mice was associated with decreased hepatocellular and myocellular diacylglycerol content and reduced protein kinase Cε activation in liver and protein kinase Cθ in skeletal muscle. In contrast, there were no effects of FGF21 on liver or muscle ceramide content. These effects may be attributed, in part, to increased energy expenditure in the liver and white adipose tissue. Taken together, these data provide a mechanism by which FGF21 protects mice from lipid-induced liver and muscle insulin resistance and support its development as a novel therapy for the treatment of nonalcoholic fatty liver disease, insulin resistance, and type 2 diabetes.


Assuntos
Metabolismo Energético , Fatores de Crescimento de Fibroblastos/metabolismo , Intolerância à Glucose/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos , Fígado/metabolismo , Músculo Esquelético/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/cirurgia , Animais , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Implantes de Medicamento , Metabolismo Energético/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/administração & dosagem , Fatores de Crescimento de Fibroblastos/uso terapêutico , Intolerância à Glucose/tratamento farmacológico , Intolerância à Glucose/etiologia , Intolerância à Glucose/patologia , Humanos , Infusões Subcutâneas , Isoenzimas/metabolismo , Lipectomia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Proteína Quinase C/metabolismo , Proteína Quinase C-épsilon/metabolismo , Proteína Quinase C-theta , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico
4.
Lipids ; 46(9): 813-20, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21725859

RESUMO

The mechanism of adipose tissue lipolysis has not been fully elucidated. Greater understanding of this process could allow for increased feed efficiency and reduced fat in poultry. Studies in avian species may provide important insight in developing therapies for human obesity, as lipolytic pathways are highly conserved. Adipose triglyceride lipase (ATGL) cleaves triacylglycols, releasing non-esterified fatty acids (NEFA) into the bloodstream. Glucocorticoids have been shown to elevate circulating NEFA. To determine the regulation of ATGL and regulator proteins comparative gene identification-58 (CGI-58) and G(0)/G(1) switch gene 2 (G0S2) by glucocorticoid, 36 chickens received an injection of dexamethasone (4 mg/kg). Saline was administered to an additional 12 birds to determine any effect of stress during handling. Dexamethasone-injected birds were harvested at 0, 0.5, 1, 2, 4, and 6 h after treatment; saline-treated birds were collected at 4 and 6 h. Abdominal and subcutaneous adipose tissue and blood were collected. Gene and protein expression were analyzed via quantitative real-time PCR and western blot. Compared with the saline group, ATGL expression increased in birds injected with dexamethasone. When dexamethasone response was compared to the untreated group up to 6 h following injection, an increase in ATGL protein was observed as quickly as 0.5 h and increased further from 1 to 6 h. Plasma NEFA and glucose increased gradually from 0 to 6 h, reaching statistical significance at 4 h. These data show that ATGL expression is stimulated by glucocorticoid in a time-dependent manner.


Assuntos
Gordura Abdominal/efeitos dos fármacos , Dexametasona/farmacologia , Ácidos Graxos não Esterificados/sangue , Glucocorticoides/farmacologia , Lipase/metabolismo , Regulação para Cima/efeitos dos fármacos , Gordura Abdominal/metabolismo , Animais , Glicemia/efeitos dos fármacos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Galinhas , Expressão Gênica/efeitos dos fármacos , Genes de Troca , Insulina/sangue , Lipase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA