Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Int J Mol Sci ; 23(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35054889

RESUMO

Glioblastoma multiforme (GBM) is a particularly malignant primary brain tumor. Despite enormous advances in the surgical treatment of cancer, radio- and chemotherapy, the average survival of patients suffering from this cancer does not usually exceed several months. For obvious ethical reasons, the search and testing of the new drugs and therapies of GBM cannot be carried out on humans, and for this purpose, animal models of the disease are most often used. However, to assess the efficacy and safety of the therapy basing on these models, a deep knowledge of the pathological changes associated with tumor development in the animal brain is necessary. Therefore, as part of our study, the synchrotron radiation-based X-ray fluorescence microscopy was applied for multi-elemental micro-imaging of the rat brain in which glioblastoma develops. Elemental changes occurring in animals after the implantation of two human glioma cell lines as well as the cells taken directly from a patient suffering from GBM were compared. Both the extent and intensity of elemental changes strongly correlated with the regions of glioma growth. The obtained results showed that the observation of elemental anomalies accompanying tumor development within an animal's brain might facilitate our understanding of the pathogenesis and progress of GBM and also determine potential biomarkers of its extension. The tumors appearing in a rat's brain were characterized by an increased accumulation of Fe and Se, whilst the tissue directly surrounding the tumor presented a higher accumulation of Cu. Furthermore, the results of the study allow us to consider Se as a potential elemental marker of GBM progression.


Assuntos
Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Glioblastoma/metabolismo , Animais , Encéfalo/patologia , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Glioblastoma/diagnóstico , Glioblastoma/patologia , Humanos , Masculino , Microscopia de Fluorescência , Ratos
2.
Epilepsy Behav ; 111: 107288, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32702654

RESUMO

Disorders of neurogenesis at early developmental stages lead to irreversible structural and functional impairments of the brain. As further their consequences, increases in brain excitability and the development of drug-resistant epilepsy can frequently be observed in clinical cases. Mechanisms underlying these phenomena can also be examined on animal models of brain dysplasia. This study was conducted on rats with four degrees of brain dysplasia following exposure to gamma radiation on days 13, 15, 17, or 19 of prenatal development. When reached adulthood, the rats received electroencephalographic (EEG) transmitter implantation. Thereafter, pilocarpine was administered, and significant differences in susceptibility to seizures were detected depending on the degree of brain dysplasia. Before, during, and after the seizures, EEG was recorded in free moving animals. Additionally, the intensity of seizure behavioral symptoms was assessed. Strong and moderate correlations were found between the intensity of seizure behavioral symptoms, the power of particular EEG bands, and volumes of dysplastic brains and their regions. The data drew particular attention to correlations between variations in EEG spectra and changes in the midbrain and pons volumes. The results point to possible significant roles of these regions in the observed changes of susceptibility to seizures. Consequently, the frequently used experimental model was considered here not only as representing cases of cortical dysplasia but also of generalized, diffuse dysplasia of the whole brain.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Eletroencefalografia/efeitos dos fármacos , Pilocarpina/toxicidade , Convulsões/induzido quimicamente , Convulsões/fisiopatologia , Animais , Encéfalo/efeitos da radiação , Eletroencefalografia/tendências , Feminino , Raios gama/efeitos adversos , Masculino , Malformações do Desenvolvimento Cortical/fisiopatologia , Agonistas Muscarínicos/toxicidade , Gravidez , Ratos , Ratos Wistar
3.
Chem Res Toxicol ; 31(9): 876-884, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30070467

RESUMO

The main goal of this study was to evaluate the elemental changes occurring in the main rat organs (kidneys, spleen, heart, brain) as a result of polyethylene glycol-coated magnetic iron oxide nanoparticles (PEG-IONPs) administration. For this purpose, 24 animals were divided into four equinumerous groups, and the three of them were intravenously injected with PEG-IONPs dispersed in 15% solution of mannitol in dose of 0.03 mg of Fe per 1 kg of body weight. The organs were collected 2 h, 24 h and 7 days passing from NPs administration, respectively, for the 2H, 24H, and 7D experimental groups. The forth group of animals, namely control group, was injected with 1 mL of physiological saline solution. For the analysis of subtle elemental changes occurring in the organs after nanoparticles injection, highly sensitive method of total reflection X-ray fluorescence spectroscopy was used. Obtained results showed that administration of even such low doses of PEG-IONPs may lead to statistically significant changes in the accumulation of selected elements within kidneys and heart. Two hours and 7 days from NPs injection, the Fe level in kidneys was higher compared to that of control rats. Elevated levels of Cu, possibly associated with systemic action of ceruloplasmine enzyme, were found within kidneys in 24H and 7D groups, while in heart the similar observation was done only for 24H group. The levels of Ca and Zn increased in kidneys and heart during the first 2 h from the injection and were again elevated in these organs 7 days later. The abnormalities in Ca and Zn accumulations occurring exactly in the same manner may suggest that these elements may interplay either in the mechanisms responsible for the detoxification of the PEG-IONPs or pathological processes occurring as a result of their action.


Assuntos
Compostos Férricos/química , Nanopartículas Metálicas/toxicidade , Polietilenoglicóis/administração & dosagem , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Compostos Férricos/administração & dosagem , Compostos Férricos/farmacocinética , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Nanopartículas Metálicas/química , Miocárdio/metabolismo , Ratos , Ratos Wistar , Espectrometria por Raios X , Baço/efeitos dos fármacos , Baço/metabolismo , Distribuição Tecidual
4.
Epilepsy Behav ; 78: 280-287, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29128467

RESUMO

Inflammation has detrimental influences on the developing brain including triggering the epileptogenesis. On the other hand, seizure episodes may induce inflammatory processes and further increase of brain excitability. The present study focuses on the problem whether transitory systemic inflammation during developmental period may have critical importance to functional and/or structural features of the adult brain. An inflammatory status was induced with lipopolysaccharide (LPS) in 6- or 30-day-old rats. Two-month-old rats which experienced the inflammation and untreated controls received injections of pilocarpine, and the intensity of their seizure behavior was rated during a 6-hour period. Three days thereafter, the animals were perfused; their brains were postfixed and subjected to magnetic resonance imaging (MRI) scans. Then, volumes of the brain and of its main regions were assessed. LPS injections alone performed at different developmental stages led to different changes in the volume of adult brain and also to different susceptibility to seizures induced in adulthood. Moreover, the LPS pretreatments modified different volumetric responses of the brain and of its regions to seizures. The responses showed strong inverse correlations with the intensity of seizures but exclusively in rats treated with LPS on postnatal day 30. It could be concluded that generalized inflammation elicited at developmental stages may have strong age-dependent effects on the adult brain regarding not only its susceptibility to action of a seizuregenic agent but also its volumetric reactivity to seizures.


Assuntos
Encéfalo/diagnóstico por imagem , Inflamação/patologia , Imageamento por Ressonância Magnética/métodos , Convulsões/patologia , Animais , Encéfalo/patologia , Lipopolissacarídeos/farmacologia , Masculino , Pilocarpina/farmacologia , Ratos , Ratos Wistar
5.
J Anat ; 231(3): 366-379, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28597918

RESUMO

Astrocytes participate in neuronal development and excitability, and produce factors enhancing or suppressing inflammatory processes occurring due to neurodegenerative diseases, such as epilepsy. Seizures, in turn, trigger the release of inflammatory mediators, causing structural and functional changes in the brain. Therefore, it appears reasonable to determine whether generalized inflammation at developmental periods can affect astrocyte reactivity to epileptic seizures occurring in the adult brain. Lipopolysaccharide (LPS) was injected in 6- or 30-day-old rats (P6 or P30, respectively). At the age of 2 months, seizures were induced, and pilocarpine and morphological changes of astrocytes located within the hippocampal formation were assessed. Additionally, expression of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), aquaporin 4 (AQP4), and inwardly rectifying potassium channel Kir 4.1 (Kir4.1) was determined using Western blots. The animal group given LPS on P6 displayed maximal susceptibility to pilocarpine-induced seizures, significantly higher than the group that received LPS on P30. In the immunohistologically examined hippocampal formation, the GFAP-immunoreactive area was not affected by LPS alone. However, it was reduced following seizures in naïve controls but not in LPS-pretreated rats. Increases in the ramification of astrocytic processes were detected only in adult rats given LPS on P30, not on P6. Seizures abolished the effects. Following seizures, the process ramification showed no significant change in the two LPS-treated rat groups, whereas it was significantly reduced in the dentate gyrus of LPS-untreated controls. Glial fibrillary acidic protein (GFAP) expression showed no changes induced with LPS alone and rose slightly after seizures. AQP4 content was lower in rats given LPS on P6 and was seizure-resistant in the two LPS-treated groups, contrary to a decrease in untreated controls. GS expression was not affected by LPS treatments and was reduced after seizures without an intergroup difference. Kir4.1 underwent highly significant increases in all groups experiencing seizures, but LPS alone had no effect. It can be concluded that the generalized inflammatory status led to some important changes in astrocytes reflected, in part at least by permanent modifications of their morphology and molecular profile. Moreover, the previously experienced inflammation prevented the cells from much stronger changes in response to seizures observed in adult untreated controls. The obtained results point to a link between the activation of astrocytes by transient systemic inflammation occurring during the developmental period and their subsequent reactivity to seizures, which may play an important role in the functional features of the brain, including its susceptibility to seizures.


Assuntos
Astrócitos/fisiologia , Encéfalo/fisiopatologia , Inflamação/fisiopatologia , Convulsões/fisiopatologia , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/imunologia , Proteína Glial Fibrilar Ácida/metabolismo , Lipopolissacarídeos , Masculino , Pilocarpina , Ratos Wistar
6.
Cell Mol Neurobiol ; 37(5): 783-789, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27541371

RESUMO

Obesity in humans is associated with cognitive decline and elevated risk of neurodegenerative diseases of old age. Variations of high-fat diet are often used to model these effects in animal studies. However, we previously reported improvements in markers of memory and learning, as well as larger hippocampi and higher metabolite concentrations in Wistar rats fed high-fat, high-carbohydrate diet (HFCD, 60 % energy from fat, 28 % from carbohydrates) for 1 year; this diet leads to mild ketonemia (Setkowicz et al. in PLoS One 10:e0139987, 2015). In the present study, we follow up on this cohort to assess glial morphology and expression of markers related to gliosis. Twenty-five male Wistar rats were kept on HFCD and twenty-five on normal chow. At 12 months of age, the animals were sacrificed and processed for immunohistochemical staining for astrocytic (glial fibrillary acidic protein), microglial (Iba1), and neuronal (neuronal nitric oxide synthetase, nNOS) markers in the hippocampus. We have found changes in immunopositive area fraction and cellular complexity, as studied by a simplified Sholl procedure. To our knowledge, this study is the first to apply this methodology to the study of glial cells in HFCD animals. GFAP and Iba1 immunoreactive area fraction in the hippocampi of HFCD-fed rats were decreased, while the mean number of intersections (an indirect measure of cell complexity) was decreased in GFAP-positive astrocytes, but not in Iba1-expressing microglia. At the same time, nNOS expression was lowered after HFCD in both the cortex and the hippocampus.


Assuntos
Astrócitos/citologia , Astrócitos/enzimologia , Forma Celular , Dieta Hiperlipídica , Microglia/citologia , Microglia/enzimologia , Óxido Nítrico Sintase Tipo I/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Contagem de Células , Ensaio de Imunoadsorção Enzimática , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Masculino , Proteínas dos Microfilamentos/metabolismo , Ratos Wistar
7.
Analyst ; 140(7): 2190-204, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25705743

RESUMO

In this study, ketogenic diet-induced biochemical changes occurring in normal and epileptic hippocampal formations were compared. Four groups of rats were analyzed, namely seizure experiencing animals and normal rats previously fed with ketogenic (KSE and K groups respectively) or standard laboratory diet (NSE and N groups respectively). Synchrotron radiation based Fourier-transform infrared microspectroscopy was used for the analysis of distributions of the main organic components (proteins, lipids, compounds containing phosphate group(s)) and their structural modifications as well as anomalies in creatine accumulation with micrometer spatial resolution. Infrared spectra recorded in the molecular layers of the dentate gyrus (DG) areas of normal rats on a ketogenic diet (K) presented increased intensity of the 1740 cm(-1) absorption band. This originates from the stretching vibrations of carbonyl groups and probably reflects increased accumulation of ketone bodies occurring in animals on a high fat diet compared to those fed with a standard laboratory diet (N). The comparison of K and N groups showed, moreover, elevated ratios of absorbance at 1634 and 1658 cm(-1) for DG internal layers and increased accumulation of creatine deposits in sector 3 of the Ammon's horn (CA3) hippocampal area of ketogenic diet fed rats. In multiform and internal layers of CA3, seizure experiencing animals on ketogenic diet (KSE) presented a lower ratio of absorbance at 1634 and 1658 cm(-1) compared to rats on standard laboratory diet (NSE). Moreover, in some of the examined cellular layers, the increased intensity of the 2924 cm(-1) lipid band as well as the massifs of 2800-3000 cm(-1) and 1360-1480 cm(-1), was found in KSE compared to NSE animals. The intensity of the 1740 cm(-1) band was diminished in DG molecular layers of KSE rats. The ketogenic diet did not modify the seizure induced anomalies in the unsaturation level of lipids or the number of creatine deposits.


Assuntos
Dieta Cetogênica/efeitos adversos , Hipocampo/efeitos dos fármacos , Convulsões/etiologia , Convulsões/metabolismo , Animais , Creatina/metabolismo , Hipocampo/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Fosfatos/metabolismo , Proteínas/metabolismo , Ratos , Ratos Wistar , Convulsões/patologia
8.
Epilepsy Behav ; 49: 66-70, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25989877

RESUMO

BACKGROUND: In the brain, inflammation occurs following a variety of types of brain damage, including epileptic seizures. Proinflammatory cytokines, like IL-1ß or TNFα, can increase neuronal excitability and initiate spontaneous seizures or epileptogenesis. Recent studies indicate that the effects can be attenuated or even abolished in animals subjected to inflammation-inducing treatments at earlier developmental stages, termed "preconditioning". Immunocompetent microglial cells display particular sensitivity to subtle brain pathologies showing a morphological continuum from resting to reactive forms. Following inflammation, multiple ramified processes of resting microglia become gradually shorter, and the cells transform into macrophages. Parameters of the morphological variations were used here as indicators of the nervous tissue reactivity to seizures in adult rats experiencing inflammation at earlier stages of postnatal development. METHODS: Systemic inflammation was induced with lipopolysaccharide (LPS) in 6-day-old or 30-day-old rats. In two-month-old survivors of the inflammatory status, seizures were evoked with pilocarpine injection. The seizure intensity was scored during a six-hour continuous observation period following the injection. Brain sections were immunostained for Iba1 to visualize microglia. Thereafter, morphology of microglial cells located in the hippocampal formation was analyzed using parameters such as solidity, circularity, ramification index, and area. RESULTS: In naïve rats, seizure-induced transformations of microglial cells were reflected by strong changes in the parameters of their morphology. However, in the adult rats pretreated with LPS on their 6th or 30th postnatal days, the seizure-induced changes were significantly reduced, and microglial morphology remained significantly closer to normal. Significant amelioration of the acute phase of seizures was observed only when inflammation was induced in 30-day-old, but not in 6-day-old, rats. CONCLUSIONS: The results confirm previous reports that moderate inflammation protects the nervous tissue from subsequent damage by reducing influences of proinflammatory factors on reactive glial cells. The young-age inflammation may have age-dependent effects on susceptibility to seizures induced in adulthood. This article is part of a Special Issue entitled "Status Epilepticus".


Assuntos
Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Mediadores da Inflamação/metabolismo , Microglia/metabolismo , Convulsões/metabolismo , Fatores Etários , Animais , Citocinas/metabolismo , Hipocampo/patologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Microglia/patologia , Pilocarpina/toxicidade , Ratos , Ratos Wistar , Convulsões/induzido quimicamente , Convulsões/patologia , Fator de Necrose Tumoral alfa/metabolismo
9.
Epilepsy Behav ; 49: 40-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25986320

RESUMO

A growing body of evidence demonstrates that dietary therapies, mainly the ketogenic diet, may be highly effective in the reduction of epileptic seizures. All of them share the common characteristic of restricting carbohydrate intake to shift the predominant caloric source of the diet to fat. Catabolism of fats results in the production of ketone bodies which become alternate energy substrates to glucose. Although many mechanisms by which ketone bodies yield its anticonvulsant effect are proposed, the relationships between the brain metabolism of the ketone bodies and their neuroprotective and antiepileptogenic action still remain to be discerned. In the study, X-ray fluorescence microscopy and FTIR microspectroscopy were used to follow ketogenic diet-induced changes in the elemental and biochemical compositions of rat hippocampal formation tissue. The use of synchrotron sources of X-rays and infrared allowed us to examine changes in the accumulation and distribution of selected elements (P, S, K, Ca, Fe, Cu, Zn, and Se) and biomolecules (proteins, lipids, ketone bodies, etc.) with the micrometer spatial resolution. The comparison of rats fed with the ketogenic diet and rats fed with the standard laboratory diet showed changes in the hippocampal accumulation of P, K, Ca, and Zn. The relations obtained for Ca (increased level in CA3, DG, and its internal area) and Zn (decreased areal density in CA3 and DG) were analogous to those that we previously observed for rats in the acute phase of pilocarpine-induced seizures. Biochemical analysis of tissues taken from ketogenic diet-fed rats demonstrated increased intensity of absorption band occurring at 1740 cm(-1), which was probably the result of elevated accumulation of ketone bodies. Moreover, higher absolute and relative (3012 cm(-1)/2924 cm(-1), 3012 cm(-1)/lipid massif, and 3012 cm(-1)/amide I) intensity of the 3012-cm(-1) band resulting from increased unsaturated fatty acids content was found after the treatment with the high-fat diet. This article is part of a Special Issue entitled "Status Epilepticus".


Assuntos
Dieta Cetogênica , Hipocampo/metabolismo , Corpos Cetônicos/metabolismo , Animais , Glucose/metabolismo , Masculino , Ratos , Ratos Wistar
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124888, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39116589

RESUMO

An important issue in the context of both potenial toxicity of iron oxide nanoparticles (IONP) and their medical applications is tracking of the internalization process of these nanomaterials into living cells, as well as their localization and fate within them. The typical methods used for this purpose are transmission electron microscopy, confocal fluorescence microscopy as well as light-scattering techniques including dark-field microscopy and flow cytometry. All the techniques mentioned have their advantages and disadvantages. Among the problems it is necessary to mention complicated sample preparation, difficult interpretation of experimental data requiring qualified and experienced personnel, different behavior of fluorescently labeled IONP comparing to those label-free or finally the lack of possibility of chemical composition characteristics of nanomaterials. The purpose of the present investigation was the assessment of the usefulness of Raman microscopy for the tracking of the internalization of IONP into cells, as well as the optimization of this process. Moreover, the study focused on identification of the potential differences in the cellular fate of superparamagnetic nanoparticles having magnetite and maghemite core. The Raman spectra of U87MG cells which internalized IONP presented additional bands which position depended on the used laser wavelength. They occurred at the wavenumber range 1700-2400 cm-1 for laser 488 nm and below the wavenumber of 800 cm-1 in case of laser 532 nm. The intensity of the mentioned Raman bands was higher for the green laser (532 nm) and their position, was independent and not characteristic on the primary core material of IONP (magnetite, maghemite). The obtained results showed that Raman microscopy is an excellent, non-destructive and objective technique that allows monitoring the process of internalization of IONP into cells and visualizing such nanoparticles and/or their metabolism products within them at low exposure levels. What is more, the process of tracking IONP using the technique may be further improved by using appropriate wavelength and power of the laser source.


Assuntos
Nanopartículas Magnéticas de Óxido de Ferro , Análise Espectral Raman , Análise Espectral Raman/métodos , Humanos , Nanopartículas Magnéticas de Óxido de Ferro/química , Linhagem Celular Tumoral , Microscopia/métodos , Compostos Férricos/química , Compostos Férricos/análise , Compostos Férricos/metabolismo
11.
Sci Rep ; 14(1): 1254, 2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218977

RESUMO

Glioblastoma (GBM) is a fast-growing and aggressive brain tumor which invades the nearby brain tissue but generally does not spread to the distant organs. Nonetheless, if untreated, GBM can result in patient death in time even less than few months from the diagnosis. The influence of the tumor progress on organs other than brain is obvious but still not well described. Therefore, we examined the elemental abnormalities appearing in selected body organs (kidney, heart, spleen, lung) in two rat models of GBM. The animals used for the study were subjected to the implantation of human GBM cell lines (U87MG and T98G) characterized by different levels of invasiveness. The elemental analysis of digested organ samples was carried out using the total reflection X-ray fluorescence (TXRF) method, independently, in three European laboratories utilizing various commercially available TXRF spectrometers. The comparison of the data obtained for animals subjected to T98G and U87MG cells implantation showed a number of elemental anomalies in the examined organs. What is more, the abnormalities were found for rats even if neoplastic tumor did not develop in their brains. The most of alterations for both experimental groups were noted in the spleen and lungs, with the direction of the found element changes in these organs being the opposite. The observed disorders of element homeostasis may result from many processes occurring in the animal body as a result of implantation of cancer cells or the development of GBM, including inflammation, anemia of chronic disease or changes in iron metabolism. Tumor induced changes in organ elemental composition detected in cooperating laboratories were usually in a good agreement. In case of elements with higher atomic numbers (Fe, Cu, Zn and Se), 88% of the results were classified as fully compliant. Some discrepancies between the laboratories were found for lighter elements (P, S, K and Ca). However, also in this case, the obtained results fulfilled the requirements of full (the results from three laboratories were in agreement) or partial agreement (the results from two laboratories were in agreement).


Assuntos
Glioblastoma , Humanos , Ratos , Animais , Fluorescência , Raios X , Encéfalo , Homeostase
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 287(Pt 2): 122086, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36423418

RESUMO

Fourier Transform Infrared (FTIR) microspectroscopy is well known for its effectiveness in spectral and biochemical analyses of various materials. It enables to determine the sample biochemical composition by assigning detected frequencies, characteristic for functional groups of main biological macromolecules. In analysis of tissue sections one of two measurement modes, namely transmission and transflection, is usually applied. The first one has relatively straightforward geometry, hence it is considered to be more precise and accurate. However, IR-transparent media are very fragile and expensive. Transflection does not require expensive substrates, but is more prone to disruptive influence of Mie scattering as well as electric field standing wave effect. The excessive comparison of spectra' characteristics, obtained via both measurement modes, was performed in this paper. By the means of Mann-Whitney non-parametrical U test and PCA, the comparison of results obtained with both modes and assessment of usefulness of IR spectra obtained with transmission and transflection modes to differentiate between healthy and GBM-affected tissue, were performed. The main objective of the presented research is to compare the results of FTIR analysis of unfixed biological samples performed with transflection and transmission mode. In frame of the study we demonstrated the discrepancies between results of biochemical analysis performed based on data obtained with transmission and transflection. Such observation suggests that caution should be taken in drawing conclusions from the results obtained with transflection geometry, as its more prone to disruptive effects. Despite that, IR spectra developed with both modes allowed to distinguish GBM area from healthy tissue, which proves their diagnostic potential. Especially, application of the ME-EMSC correction of spectra before PCA enhances the performance of both methods to distinguish the analysed tissue areas.


Assuntos
Glioblastoma , Humanos , Análise de Fourier , Glioblastoma/diagnóstico , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade , Espectrofotometria Infravermelho
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123230, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586277

RESUMO

Glioblastoma multiforme (GBM) is the most common and devastating primary brain tumor among adults. It is highly lethal disease, as only 25% of patients survive longer than 1 year and only 5% more than 5 years from the diagnosis. To search for the new, more effective methods of treatment, the understanding of mechanisms underlying the process of tumorigenesis is needed. The new light on this problem may be shed by the analysis of biochemical anomalies of tissues affected by tumor growth. Therefore, in the present work, we applied the Fourier transform infrared (FTIR) and Raman microspectroscopy to evaluate changes in the distribution and structure of biomolecules appearing in the rat brain as a result of glioblastoma development. In turn, synchrotron X-ray fluorescence microscopy was utilized to determine the elemental anomalies appearing in the nervous tissue. To achieve the assumed goals of the study animal models of GBM were used. The rats were subjected to the intracranial implantation of glioma cells with different degree of invasiveness. For spectroscopic investigation brain slices taken from the area of cancer cells administration were used. The obtained results revealed, among others, the decrease content of lipids and compounds containing carbonyl groups, compositional and structural changes of proteins as well as abnormalities in the distribution of low atomic number elements within the region of tumor.


Assuntos
Glioblastoma , Ratos , Animais , Glioblastoma/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Proteínas , Encéfalo/patologia , Modelos Animais
14.
Sci Rep ; 13(1): 18448, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891248

RESUMO

The ketogenic diet (KD) is a low-carbohydrate and high-fat diet that gains increasing popularity in the treatment of numerous diseases, including epilepsy, brain cancers, type 2 diabetes and various metabolic syndromes. Although KD is effective in the treatment of mentioned medical conditions, it is unfortunately not without side effects. The most frequently occurring undesired outcomes of this diet are nutrient deficiencies, the formation of kidney stones, loss of bone mineral density, increased LDL (low-density lipoprotein) cholesterol levels and hormonal disturbances. Both the diet itself and the mentioned adverse effects can influence the elemental composition and homeostasis of internal organs. Therefore, the objective of this study was to determine the elemental abnormalities that appear in the liver, kidney, and spleen of rats subjected to long-term KD treatment. The investigation was conducted separately on males and females to determine if observed changes in the elemental composition of organs are gender-dependent. To measure the concentration of P, S, K, Ca, Fe, Cu, Zn and Se in the tissues the method of the total reflection X-ray fluorescence (TXRF) was utilized. The obtained results revealed numerous elemental abnormalities in the organs of animals fed a high-fat diet. Only some of them can be explained by the differences in the composition and intake of the ketogenic and standard diets. Furthermore, in many cases, the observed anomalies differed between male and female rats.


Assuntos
Diabetes Mellitus Tipo 2 , Dieta Cetogênica , Epilepsia , Masculino , Ratos , Feminino , Animais , Dieta Cetogênica/efeitos adversos , Dieta Cetogênica/métodos , Dieta Hiperlipídica/efeitos adversos , Homeostase
15.
J Comp Neurol ; 530(9): 1379-1398, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34861050

RESUMO

Disturbances of the early stages of neurogenesis lead to irreversible changes in the structure of the mature brain and its functional impairment, including increased excitability, which may be the basis for drug-resistant epilepsy. The range of possible clinical symptoms is as wide as the different stages of disturbed neurogenesis may be. In this study, we used a quadruple model of brain dysplasia by comparing structural and functional disorders in animals whose neurogenesis was disturbed with a single dose of 1 Gy of gamma rays at one of the four stages of neurogenesis, that is, on days 13, 15, 17, or 19 of prenatal development. When reached adulthood, the prenatally irradiated rats received EEG teletransmitter implantation. Thereafter, pilocarpine was administered and significant differences in susceptibility to seizure behavioral symptoms were detected depending on the degree of brain dysplasia. Before, during, and after the seizures significant correlations were found between the density of parvalbumin-immunopositive neurons located in the cerebral cortex and the intensity of behavioral seizure symptoms or increases in the power of particular EEG bands. Neurons expressing calretinin or NPY showed also dysplasia-related increases without, however, correlations with parameters of seizure intensity. The results point to significant roles of parvalbumin-expressing interneurons, and also to expression of NPY-an endogenous anticonvulsant and neuroprotectant reducing susceptibility to seizures and supporting neuronal survival.


Assuntos
Neocórtex , Animais , Eletroencefalografia , Feminino , Parvalbuminas , Gravidez , Ratos , Ratos Wistar , Convulsões
16.
Brain Struct Funct ; 227(3): 1099-1113, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35038032

RESUMO

The ketogenic diet (KD) is a type of diet in which the intake of fats significantly increases at the cost of carbohydrates while maintaining an adequate amount of proteins. This kind of diet has been successfully used in clinical therapies of drug-resistant epilepsy, but there is still insufficient evidence on its safety when used in pregnancy. To assess KD effects on the course of gestation and fetal development, pregnant females were fed with: (i) KD during pregnancy and lactation periods (KD group), (ii) KD during pregnancy replaced with ND from the day 2 postpartum (KDND group) and (iii) normal diet alone (ND group). The body mass, ketone and glucose blood levels, and food intake were monitored. In brains of KD-fed females, FTIR biochemical analyses revealed increased concentrations of lipids and ketone groups containing molecules. In offspring of these females, significant reduction of the body mass and delays in neurological development were detected. However, replacement of KD with ND in these females at the beginning of lactation period led to regainment of the body mass in their pups as early as on the postnatal day 14. Moreover, the vast majority of our neurological tests detected functional recovery up to the normal level. It could be concluded that the ketogenic diet undoubtedly affects the brain of pregnant females and impairs the somatic and neurological development of their offspring. However, early postnatal withdrawal of this diet may initiate compensatory processes and considerable functional restitution of the nervous system based on still unrecognized mechanisms.


Assuntos
Dieta Cetogênica , Animais , Animais Recém-Nascidos , Encéfalo , Dieta Cetogênica/efeitos adversos , Ingestão de Alimentos/fisiologia , Feminino , Lactação , Gravidez , Ratos
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 278: 121337, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35537264

RESUMO

The core size of iron oxide nanoparticles (IONPs) is a crucial factor defining not only their magnetic properties but also toxicological profile and biocompatibility. On the other hand, particular IONPs may induce different biological response depending on the dose, exposure time, but mainly depending on the examined system. New light on this problem may be shed by the information concerning biomolecular anomalies appearing in various cell lines in response to the action of IONPs with different core diameters and this was accomplished in the present study. Using Raman microscopy we studied the abnormalities in the accumulation of proteins, lipids and organic matter within the nucleus, cytoplasm and cellular membrane of macrophages, HEK293T and U87MG cell line occurring as a result of 24-hour long exposure to PEG-coated magnetite IONPs. The examined nanoparticles had 5, 10 and 30 nm cores and were administered in doses 5 and 25 µg Fe/ml. The obtained results showed significant anomalies in biochemical composition of macrophages and the U87MG cells, but not the HEK293T cells, occurring as a result of exposure to all of the examined nanoparticles. However, IONPs with 10 nm core diminished the accumulation of biomolecules in cells only when they were administered at a larger dose. The Raman spectra recorded for the macrophages subjected to 30 nm IONPs and for the U87MG cells exposed to 5 and 10 nm showed the presence of additional bands in the wavenumber range 1700-2400 cm-1, probably resulting from the appearance of Fe adducts within cells. Our results indicate, moreover, that smaller IONPs may be effectively internalized into the U87MG cells, which points at their diagnostic/therapeutic potential in the case of glioblastoma multiforme.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Compostos Férricos/toxicidade , Óxido Ferroso-Férrico , Células HEK293 , Humanos , Macrófagos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidade , Nanopartículas/química
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 263: 120214, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34325168

RESUMO

Traumatic brain injury (TBI), meaning functional or structural brain damage which appear as a result of the application of the external physical force, constitutes the main cause of death and disability of individuals and a great socioeconomic problem. To search for the new therapeutic strategies for TBI, better knowledge about posttraumatic pathological changes occurring in the brain is necessary. Therefore in the present paper the Fourier transform infrared microspectroscopy and Raman microscopy were used to examine local and remote biochemical changes occurring in the rat brain as a result of focal cortex injury. The site of the injury and the dorsal part of the hippocampal formation together with the above situated cortex and white matter were the subject of the study. The topographic and quantitative biochemical analysis followed with the statistical study using principal component analysis showed significant biomolecular anomalies within the lesion site but not in the area of the dorsal hippocampal formation and in the above situated white matter and cortex. The observed intralesional anomalies included significantly decreased accumulation of lipids and their structural changes within the place of injury. Also the levels of compounds containing phosphate and carbonyl groups were lower within the lesion site comparing to the surrounding cortex. The opposite relation was, in turn, found for the bands characteristic to proteins and cholesterol/cholesterol esters.


Assuntos
Encéfalo , Lipídeos , Animais , Análise de Fourier , Análise de Componente Principal , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Sci Rep ; 11(1): 3704, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33580127

RESUMO

The fundamental role of major, minor and trace elements in different physiological and pathological processes occurring in living organism makes that elemental analysis of biomedical samples becomes more and more popular issue. The most often used tools for analysis of the elemental composition of biological samples include Flame and Graphite Furnace Atomic Absorption Spectroscopy (F-AAS and GF-AAS), Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Each of these techniques has many advantages and limitations that should be considered in the first stage of planning the measurement procedure. Their reliability can be checked in the validation process and the precision, trueness and detection limits of elements belong to the most frequently determined validation parameters. The main purpose of this paper was the discussion of selected instrumental techniques (F-AAS, GF-AAS, ICP-OES and ICP-MS) in term of the achieved validation parameters and the usefulness in the analysis of biological samples. The focus in the detailed literature studies was also put on the methods of preparation of the biomedical samples. What is more based on the own data the usefulness of the total reflection X-ray fluorescence spectroscopy for the elemental analysis of animal tissues was examined. The detection limits of elements, precision and trueness for the technique were determined and compared with the literature data concerning other of the discussed techniques of elemental analysis. Reassuming, the following paper is to serve as a guide and comprehensive source of information concerning the validation parameters achievable in different instrumental techniques used for the elemental analysis of biomedical samples.

20.
Sci Rep ; 11(1): 21808, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750434

RESUMO

Although the key factor affecting the biocompatibility of IONPs is the core size, there is a lack of regular investigation concerning the impact of the parameter on the toxicity of these nanomaterials. Therefore, such studies were carried out in this paper. Their purpose was to compare the influence of PEG-coated-magnetite NPs with the core of 5, 10 and 30 nm on six carefully selected cell lines. The proliferation rate, viability, metabolic activity, migration activity, ROS levels and cytoskeleton architecture of cells have been evaluated for specified incubation periods. These were 24 and 72-h long incubations with IONPs administered in two doses: 5 and 25 µg Fe/ml. A decrease in viability was observed after exposure to the tested NPs for all the analyzed cell lines. This effect was not connected with core diameter but depended on the exposure time to the nanomaterials. IONPs increased not only the proliferation rate of macrophages-being phagocytic cells-but also, under certain conditions stimulated tumor cell divisions. Most likely, the increase in proliferation rate of macrophages contributed to the changes in the architecture of their cytoskeleton. The growth in the level of ROS in cells had been induced mainly by the smallest NPs. This effect was observed for HEK293T cells and two cancerous lines: U87MG (at both doses tested) and T98G (only for the higher dose). This requires further study concerning both potential toxicity of such IONPs to the kidneys and assessing their therapeutic potential in the treatment of glioblastoma multiforme.


Assuntos
Linhagem Celular/efeitos dos fármacos , Nanopartículas Magnéticas de Óxido de Ferro/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Linhagem Celular/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Movimento Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Células HEK293/efeitos dos fármacos , Células HEK293/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro/administração & dosagem , Nanopartículas Magnéticas de Óxido de Ferro/ultraestrutura , Camundongos , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA