Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Immunity ; 56(8): 1704-1706, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37557077

RESUMO

Hypoxia is a major driver of tumor aggressiveness and therapy resistance in GBM. In this issue of Immunity, Sattiraju et al. functionally link hypoxia with diminished anti-cancer immunity caused by sequestration of immunosuppressive TAMs and CTLs in pseudopalisades in GBM.


Assuntos
Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/patologia , Hipóxia , Linhagem Celular Tumoral , Microambiente Tumoral
2.
Nervenarzt ; 95(2): 104-110, 2024 Feb.
Artigo em Alemão | MEDLINE | ID: mdl-38180512

RESUMO

BACKGROUND: Primary brain tumors and metastases in the central nervous system (CNS) are characterized by their unique microenvironment, which interacts with neuronal structures and influences structural and adaptive immunity. OBJECTIVE: How significant are various tumor-host interactions from a prognostic and therapeutic perspective? MATERIAL AND METHOD: A literature search was carried out for relevant articles on the topic: microenvironment glioblastoma or metastasis through PubMed and Medline. RESULTS: Modern high-throughput methods, such as spatial and single-cell resolution molecular characterization of tumors and their microenvironment enable a detailed mapping of changes and adaptation of individual cells within the microenvironment of tumors; however, treatment approaches based on altered tumor-host cell interactions, such as immune modeling, cell-based treatment methods or checkpoint inhibition have so far not shown any significant advantages for survival. CONCLUSION: A deeper understanding of the complex immune landscape and the microenvironment of metastases of the CNS and intracerebral tumors is essential to optimize future treatment strategies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Neoplasias Encefálicas/terapia , Glioblastoma/patologia , Glioblastoma/terapia , Prognóstico , Sistema Nervoso Central , Comunicação Celular , Microambiente Tumoral
3.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37373202

RESUMO

Metastasis, particularly brain metastasis, continues to puzzle researchers to this day, and exploring its molecular basis promises to break ground in developing new strategies for combatting this deadly cancer. In recent years, the research focus has shifted toward the earliest steps in the formation of metastasis. In this regard, significant progress has been achieved in understanding how the primary tumor affects distant organ sites before the arrival of tumor cells. The term pre-metastatic niche was introduced for this concept and encompasses all influences on sites of future metastases, ranging from immunological modulation and ECM remodeling to the softening of the blood-brain barrier. The mechanisms governing the spread of metastasis to the brain remain elusive. However, we begin to understand these processes by looking at the earliest steps in the formation of metastasis. This review aims to present recent findings on the brain pre-metastatic niche and to discuss existing and emerging methods to further explore the field. We begin by giving an overview of the pre-metastatic and metastatic niches in general before focusing on their manifestations in the brain. To conclude, we reflect on the methods usually employed in this field of research and discuss novel approaches in imaging and sequencing.


Assuntos
Neoplasias Encefálicas , Microambiente Tumoral , Humanos , Encéfalo , Barreira Hematoencefálica , Metástase Neoplásica
4.
Genes Dev ; 28(21): 2331-47, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25367033

RESUMO

Pericellular proteases have long been associated with cancer invasion and metastasis due to their ability to degrade extracellular matrix components. Recent studies demonstrate that proteases also modulate tumor progression and metastasis through highly regulated and complex processes involving cleavage, processing, or shedding of cell adhesion molecules, growth factors, cytokines, and kinases. In this review, we address how cancer cells, together with their surrounding microenvironment, regulate pericellular proteolysis. We dissect the multitude of mechanisms by which pericellular proteases contribute to cancer progression and discuss how this knowledge can be integrated into therapeutic opportunities.


Assuntos
Neoplasias/enzimologia , Neoplasias/fisiopatologia , Peptídeo Hidrolases/metabolismo , Microambiente Tumoral/fisiologia , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Exossomos/metabolismo , Transporte Proteico , Proteólise
5.
Genes Dev ; 28(19): 2134-50, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25274726

RESUMO

During the process of tumor progression, cancer cells can produce the requisite growth- and invasion-promoting factors and can also rely on noncancerous cells in the tumor microenvironment as an alternative, cell-extrinsic source. However, whether the cellular source influences the function of such tumor-promoting factors remains an open question. Here, we examined the roles of the cathepsin Z (CtsZ) protease, which is provided by both cancer cells and macrophages in pancreatic neuroendocrine tumors in humans and mice. We found that tumor proliferation was exclusively regulated by cancer cell-intrinsic functions of CtsZ, whereas tumor invasion required contributions from both macrophages and cancer cells. Interestingly, several of the tumor-promoting functions of CtsZ were not dependent on its described catalytic activity but instead were mediated via the Arg-Gly-Asp (RGD) motif in the enzyme prodomain, which regulated interactions with integrins and the extracellular matrix. Together, these results underscore the complexity of interactions within the tumor microenvironment and indicate that cellular source can indeed impact molecular function.


Assuntos
Catepsina Z/metabolismo , Matriz Extracelular/metabolismo , Macrófagos/enzimologia , Neoplasias/enzimologia , Neoplasias/fisiopatologia , Animais , Linhagem Celular Tumoral , Integrinas/metabolismo , Camundongos Endogâmicos C57BL , Invasividade Neoplásica/fisiopatologia
6.
Neuro Oncol ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831719

RESUMO

Brain metastases (BM) constitute an increasing challenge in oncology due to their impact on neurological function, limited treatment options, and poor prognosis. BM occur through extravasation of circulating tumor cells across the blood-brain barrier. However, the extravasation processes are still poorly understood. We here propose a brain colonization process which mimics infarction-like microenvironmental reactions, that is dependent on Angiopoietin (Ang-2) and vascular endothelial growth factor (VEGF). In this study, intracardiac BM models were used, and cerebral blood microcirculation was monitored by 2-photon microscopy through a cranial window. BM formation was observed using cranial magnetic resonance, bioluminescent imaging, and post-mortem autopsy. Ang-2/VEGF targeting strategies and Ang-2 gain-of-function (GOF) mice were employed to interfere with BM formation. In addition, vascular and stromal factors as well as clinical outcome were analyzed in BM patients. Blood vessel occlusions by cancer cells were detected, accompanied by significant disturbances of cerebral blood microcirculation, and focal stroke-like histological signs. Cerebral endothelial cells showed an elevated Ang-2 expression both in mouse and human BM. Ang-2 GOF resulted in an increased BM burden. Combined anti-Ang-2/anti-VEGF therapy led to a decrease in brain metastasis size and number. Ang-2 expression in tumor vessels of established human brain metastases negatively correlated with survival. Our observations revealed a relationship between disturbance of cerebral blood microcirculation and brain metastasis formation. This suggests that vessel occlusion by tumor cells facilitates brain metastatic extravasation and seeding, while combined inhibition of microenvironmental effects of Ang-2 and VEGF prevent the outgrowth of macrometastases.

7.
Proc Natl Acad Sci U S A ; 107(6): 2497-502, 2010 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-20133781

RESUMO

The lysosomal cysteine proteases cathepsin B (Ctsb) and cathepsin Z (Ctsz, also called cathepsin X/P) have been implicated in cancer pathogenesis. Compensation of Ctsb by Ctsz in Ctsb (-/-) mice has been suggested. To further define the functional interplay of these proteases in the context of cancer, we generated Ctsz null mice, crossed them with Ctsb-deficient mice harboring a transgene for the mammary duct-specific expression of polyoma middle T oncogene (PymT), and analyzed the effects of single and combined Ctsb and Ctsz deficiencies on breast cancer progression. Single Ctsb deficiency resulted in delayed detection of first tumors and reduced tumor burden, whereas Ctsz-deficient mice had only a prolonged tumor-free period. However, only a trend toward reduced metastatic burden without statistical significance was detected in both single mutants. Strikingly, combined loss of Ctsb and Ctsz led to additive effects, resulting in significant and prominent delay of early and advanced tumor development, improved histopathologic tumor grading, as well as a 70% reduction in the number of lung metastases and an 80% reduction in the size of these metastases. We conclude that the double deficiency of Ctsb and Ctsz exerts significant synergistic anticancer effects, whereas the single deficiencies demonstrate at least partial reciprocal compensation.


Assuntos
Catepsina B/deficiência , Catepsina Z/deficiência , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Animais/patologia , Animais , Antígenos Transformantes de Poliomavirus/genética , Antígenos Transformantes de Poliomavirus/metabolismo , Apoptose , Catepsina B/genética , Catepsina B/metabolismo , Catepsina Z/genética , Catepsina Z/metabolismo , Movimento Celular , Proliferação de Células , Progressão da Doença , Feminino , Imunofluorescência , Genótipo , Humanos , Immunoblotting , Imuno-Histoquímica , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Masculino , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/enzimologia , Neoplasias Mamárias Animais/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Carga Tumoral
8.
Inflamm Res ; 61(9): 1021-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22674323

RESUMO

OBJECTIVE: Cathepsin L (CL) is potentially involved in joint destruction and in antigen presentation in rheumatoid arthritis. In order to define the roles of this protease in arthritis development we analysed the antigen-induced arthritis (AIA) in CL-deficient (CL(-/-)) mice. METHODS: Antigen-induced arthritis was induced in CL(-/-) and wild-type mice. Complete CL deficiency resulted in an impaired positive selection of conventional CD4(+) T helper (Th) cells and finally in a reduced number of Th cells. Thus, we addressed the effect of this phenotype by rescuing CD4(+) Th cell numbers by transgenic expression of the human CL-like protease cathepsin V (hCV) in thymic epithelium of CL(-/-) mice [Tg(K14-hCV);CL(-/-)]. The arthritis development was monitored by measuring joint swelling. Joint inflammation and destruction were assessed histopathologically. RESULTS: The severity of AIA was decreased in CL(-/-) mice characterized by reduced swelling, decreased inflammation and destruction, and diminished cellular and humoral immune responsiveness. AIA in Tg(K14-hCV);CL(-/-) mice was associated with a reconstitution of all parameters by normalization of the ratio of regulatory to conventional T cells. CONCLUSIONS: Cathepsin L has a significant impact on AIA severity by influencing the selection of Th cell populations in the thymus, but seems not play any significant role in the direct joint destruction.


Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Catepsina L/deficiência , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Artrite Experimental/patologia , Artrite Reumatoide/patologia , Catepsina L/genética , Catepsina L/imunologia , Catepsinas/genética , Cisteína Endopeptidases/genética , Hipersensibilidade Tardia/imunologia , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Soroalbumina Bovina/imunologia
9.
Cancers (Basel) ; 14(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35158871

RESUMO

Breast cancer is a heterogeneous disease and the mechanistic framework for differential osteotropism among intrinsic breast cancer subtypes is unknown. Hypothesizing that cell morphology could be an integrated readout for the functional state of a cancer cell, we established a catalogue of the migratory, molecular and biophysical traits of MDA-MB-231 breast cancer cells, compared it with two enhanced bone-seeking derivative cell lines and integrated these findings with single cell morphology profiles. Such knowledge could be essential for predicting metastatic capacities in breast cancer. High-resolution microscopy revealed a heterogeneous and specific spectrum of single cell morphologies in bone-seeking cells, which correlated with differential migration and stiffness. While parental MDA-MB-231 cells showed long and dynamic membrane protrusions and were enriched in motile cells with continuous and mesenchymal cell migration, bone-seeking cells appeared with discontinuous mesenchymal or amoeboid-like migration. Although non-responsive to CXCL12, bone-seeking cells responded to epidermal growth factor with a morphotype shift and differential expression of genes controlling cell shape and directional migration. Hence, single cell morphology encodes the molecular, migratory and biophysical architecture of breast cancer cells and is specifically altered among osteotropic phenotypes. Quantitative morpho-profiling could aid in dissecting breast cancer heterogeneity and in refining clinically relevant intrinsic breast cancer subtypes.

10.
Front Immunol ; 12: 716504, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539650

RESUMO

Macrophages not only represent an integral part of innate immunity but also critically contribute to tissue and organ homeostasis. Moreover, disease progression is accompanied by macrophage accumulation in many cancer types and is often associated with poor prognosis and therapy resistance. Given their critical role in modulating tumor immunity in primary and metastatic brain cancers, macrophages are emerging as promising therapeutic targets. Different types of macrophages infiltrate brain cancers, including (i) CNS resident macrophages that comprise microglia (TAM-MG) as well as border-associated macrophages and (ii) monocyte-derived macrophages (TAM-MDM) that are recruited from the periphery. Controversy remained about their disease-associated functions since classical approaches did not reliably distinguish between macrophage subpopulations. Recent conceptual and technological advances, such as large-scale omic approaches, provided new insight into molecular profiles of TAMs based on their cellular origin. In this review, we summarize insight from recent studies highlighting similarities and differences of TAM-MG and TAM-MDM at the molecular level. We will focus on data obtained from RNA sequencing and mass cytometry approaches. Together, this knowledge significantly contributes to our understanding of transcriptional and translational programs that define disease-associated TAM functions. Cross-species meta-analyses will further help to evaluate the translational significance of preclinical findings as part of the effort to identify candidates for macrophage-targeted therapy against brain metastasis.


Assuntos
Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Microglia/imunologia , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Animais , Biomarcadores , Neoplasias Encefálicas/secundário , Suscetibilidade a Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Microglia/metabolismo , Transcriptoma , Macrófagos Associados a Tumor/metabolismo
11.
Methods Mol Biol ; 2294: 275-293, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33742409

RESUMO

It is becoming increasingly evident that progression and metastasis of solid cancers is driven by the interaction of oncogene-transformed cancer cells and non-malignant host cells in the tumor stroma. In this process, the immune system contributes a complex set of highly important pro- and antitumor effects, which are not readily recapitulated by commonly used xenograft cancer models in immunodeficient mice.Therefore, we provide protocols for isolation of primary tumor cells from the MMTV-PymT mouse model for metastasizing breast cancer and their resubmission to congenic immunocompetent mice by orthotopic transplantation into the mammary gland or different routes of injection to induce organ-specific experimental metastasis, including intravenous, intracardiac, and caudal artery injection of tumor cells. Moreover, we describe protocols for sensitive detection and quantification of the metastatic burden.


Assuntos
Adenocarcinoma/patologia , Neoplasias Encefálicas/secundário , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/patologia , Peptídeo Hidrolases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Adenocarcinoma/enzimologia , Animais , Feminino , Neoplasias Mamárias Experimentais/enzimologia , Camundongos , Transgenes , Células Tumorais Cultivadas
12.
EMBO Mol Med ; 13(5): e13412, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33755340

RESUMO

The tumor microenvironment in brain metastases is characterized by high myeloid cell content associated with immune suppressive and cancer-permissive functions. Moreover, brain metastases induce the recruitment of lymphocytes. Despite their presence, T-cell-directed therapies fail to elicit effective anti-tumor immune responses. Here, we seek to evaluate the applicability of radio-immunotherapy to modulate tumor immunity and overcome inhibitory effects that diminish anti-cancer activity. Radiotherapy-induced immune modulation resulted in an increase in cytotoxic T-cell numbers and prevented the induction of lymphocyte-mediated immune suppression. Radio-immunotherapy led to significantly improved tumor control with prolonged median survival in experimental breast-to-brain metastasis. However, long-term efficacy was not observed. Recurrent brain metastases showed accumulation of blood-borne PD-L1+ myeloid cells after radio-immunotherapy indicating the establishment of an immune suppressive environment to counteract re-activated T-cell responses. This finding was further supported by transcriptional analyses indicating a crucial role for monocyte-derived macrophages in mediating immune suppression and regulating T-cell function. Therefore, selective targeting of immune suppressive functions of myeloid cells is expected to be critical for improved therapeutic efficacy of radio-immunotherapy in brain metastases.


Assuntos
Neoplasias Encefálicas , Microambiente Tumoral , Neoplasias Encefálicas/radioterapia , Humanos , Imunoterapia , Macrófagos , Células Mieloides
13.
Nat Cancer ; 2(10): 1086-1101, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-35121879

RESUMO

Tumor microenvironment-targeted therapies are emerging as promising treatment options for different cancer types. Tumor-associated macrophages and microglia (TAMs) represent an abundant nonmalignant cell type in brain metastases and have been proposed to modulate metastatic colonization and outgrowth. Here we demonstrate that targeting TAMs at distinct stages of the metastatic cascade using an inhibitor of colony-stimulating factor 1 receptor (CSF1R), BLZ945, in murine breast-to-brain metastasis models leads to antitumor responses in prevention and intervention preclinical trials. However, in established brain metastases, compensatory CSF2Rb-STAT5-mediated pro-inflammatory TAM activation blunted the ultimate efficacy of CSF1R inhibition by inducing neuroinflammation gene signatures in association with wound repair responses that fostered tumor recurrence. Consequently, blockade of CSF1R combined with inhibition of STAT5 signaling via AC4-130 led to sustained tumor control, a normalization of microglial activation states and amelioration of neuronal damage.


Assuntos
Neoplasias Encefálicas , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Animais , Neoplasias Encefálicas/secundário , Genes fms , Ativação de Macrófagos , Melanoma , Camundongos , Receptores de Fator Estimulador de Colônias/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Fator de Transcrição STAT5/genética , Neoplasias Cutâneas , Microambiente Tumoral , Melanoma Maligno Cutâneo
14.
iScience ; 23(6): 101178, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32480132

RESUMO

Brain-resident microglia and bone marrow-derived macrophages represent the most abundant non-cancerous cells in the brain tumor microenvironment with critical functions in disease progression and therapeutic response. To date little is known about genetic programs that drive disease-associated phenotypes of microglia and macrophages in brain metastases. Here we used cytometric and transcriptomic analyses to define cellular and molecular changes of the myeloid compartment at distinct stages of brain metastasis and in response to radiotherapy. We demonstrate that genetic programming of tumor education in myeloid cells occurs early during metastatic onset and remains stable throughout tumor progression. Bulk and single cell RNA sequencing revealed distinct gene signatures in brain-resident microglia and blood-borne monocytes/macrophages during brain metastasis and in response to therapeutic intervention. Our data provide a framework for understanding the functional heterogeneity of brain metastasis-associated myeloid cells based on their origin.

15.
Front Oncol ; 9: 163, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941312

RESUMO

The development of immunotherapies has revolutionized intervention strategies for a variety of primary cancers. Despite this promising progress, treatment options for primary brain cancer and brain metastasis remain limited and still largely depend on surgical resection, radio- and/or chemotherapy. The paucity in the successful development of immunotherapies for brain cancers can in part be attributed to the traditional view of the brain as an immunologically privileged site. The presence of the blood-brain barrier and the absence of lymphatic drainage were believed to restrict the entry of blood-borne immune and inflammatory cells into the central nervous system (CNS), leading to an exclusion of the brain from systemic immune surveillance. However, recent insight from pre-clinical and clinical studies on the immune landscape of brain cancers challenged this dogma. Recruitment of blood-borne immune cells into the CNS provides unprecedented opportunities for the development of tumor microenvironment (TME)-targeted or immunotherapies against primary and metastatic cancers. Moreover, it is increasingly recognized that in addition to genotoxic effects, ionizing radiation represents a critical modulator of tumor-associated inflammation and synergizes with immunotherapies in adjuvant settings. This review summarizes current knowledge on the cellular and molecular identity of tumor-associated immune cells in primary and metastatic brain cancers and discusses underlying mechanisms by which ionizing radiation modulates the immune response. Detailed mechanistic insight into the effects of radiation on the unique immune landscape of brain cancers is essential for the development of multimodality intervention strategies in which immune-modulatory effects of radiotherapy are exploited to sensitize brain cancers to immunotherapies by converting immunologically "cold" into "hot" environments.

16.
Front Immunol ; 10: 1713, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396225

RESUMO

Cellular and non-cellular components of the tumor microenvironment (TME) are emerging as key regulators of primary tumor progression, organ-specific metastasis, and therapeutic response. In the era of TME-targeted- and immunotherapies, cancer-associated inflammation has gained increasing attention. In this regard, the brain represents a unique and highly specialized organ. It has long been regarded as an immunological sanctuary site where the presence of the blood brain barrier (BBB) and blood cerebrospinal fluid barrier (BCB) restricts the entry of immune cells from the periphery. Consequently, tumor cells that metastasize to the brain were thought to be shielded from systemic immune surveillance and destruction. However, the detailed characterization of the immune landscape within border-associated areas of the central nervous system (CNS), such as the meninges and the choroid plexus, as well as the discovery of lymphatics and channels that connect the CNS with the periphery, have recently challenged the dogma of the immune privileged status of the brain. Moreover, the presence of brain metastases (BrM) disrupts the integrity of the BBB and BCB. Indeed, BrM induce the recruitment of different immune cells from the myeloid and lymphoid lineage to the CNS. Blood-borne immune cells together with brain-resident cell-types, such as astrocytes, microglia, and neurons, form a highly complex and dynamic TME that affects tumor cell survival and modulates the mode of immune responses that are elicited by brain metastatic tumor cells. In this review, we will summarize recent findings on heterotypic interactions within the brain metastatic TME and highlight specific functions of brain-resident and recruited cells at different rate-limiting steps of the metastatic cascade. Based on the insight from recent studies, we will discuss new opportunities and challenges for TME-targeted and immunotherapies for BrM.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Evasão Tumoral , Microambiente Tumoral/imunologia , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/patologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Humanos , Metástase Neoplásica
17.
Front Oncol ; 9: 1324, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31828043

RESUMO

Brain metastases are the most common intracranial tumor in adults and are associated with poor patient prognosis and median survival of only a few months. Treatment options for brain metastasis patients remain limited and largely depend on surgical resection, radio- and/or chemotherapy. The development and pre-clinical testing of novel therapeutic strategies require reliable experimental models and diagnostic tools that closely mimic technologies that are used in the clinic and reflect histopathological and biochemical changes that distinguish tumor progression from therapeutic response. In this study, we sought to test the applicability of magnetic resonance (MR) spectroscopy in combination with MR imaging to closely monitor therapeutic efficacy in a breast-to-brain metastasis model. Given the importance of radiotherapy as the standard of care for the majority of brain metastases patients, we chose to monitor the post-irradiation response by magnetic resonance spectroscopy (MRS) in combination with MR imaging (MRI) using a 7 Tesla small animal scanner. Radiation was applied as whole brain radiotherapy (WBRT) using the image-guided Small Animal Radiation Research Platform (SARRP). Here we describe alterations in different metabolites, including creatine and N-acetylaspartate, that are characteristic for brain metastases progression and lactate, which indicates hypoxia, while choline levels remained stable. Radiotherapy resulted in normalization of metabolite levels indicating tumor stasis or regression in response to treatment. Our data indicate that the use of MR spectroscopy in addition to MRI represents a valuable tool to closely monitor not only volumetrical but also metabolic changes during tumor progression and to evaluate therapeutic efficacy of intervention strategies. Adapting the analytical technology in brain metastasis models to those used in clinical settings will increase the translational significance of experimental evaluation and thus contribute to the advancement of pre-clinical assessment of novel therapeutic strategies to improve treatment options for brain metastases patients.

18.
Front Immunol ; 9: 697, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29681904

RESUMO

Inflammation is a hallmark of different central nervous system (CNS) pathologies. It has been linked to neurodegenerative disorders as well as primary and metastatic brain tumors. Microglia, the brain-resident immune cells, are emerging as a central player in regulating key pathways in CNS inflammation. Recent insights into neuroinflammation indicate that blood-borne immune cells represent an additional critical cellular component in mediating CNS inflammation. The lack of experimental systems that allow for discrimination between brain-resident and recruited myeloid cells has previously halted functional analysis of microglia and their blood-borne counterparts in brain malignancies. However, recent conceptual and technological advances, such as the generation of lineage tracing models and the identification of cell type-specific markers provide unprecedented opportunities to study the cellular functions of microglia and macrophages by functional interference. The use of different "omic" strategies as well as imaging techniques has significantly increased our knowledge of disease-associated gene signatures and effector functions under pathological conditions. In this review, recent developments in evaluating functions of brain-resident and recruited myeloid cells in neurodegenerative disorders and brain cancers will be discussed and unique or shared cellular traits of microglia and macrophages in different CNS disorders will be highlighted. Insight from these studies will shape our understanding of disease- and cell-type-specific effector functions of microglia or macrophages and will open new avenues for therapeutic intervention that target aberrant functions of myeloid cells in CNS pathologies.


Assuntos
Neoplasias Encefálicas/imunologia , Encéfalo/imunologia , Doenças do Sistema Nervoso Central/imunologia , Macrófagos/imunologia , Microglia/imunologia , Doenças Neurodegenerativas/imunologia , Animais , Neoplasias Encefálicas/terapia , Doenças do Sistema Nervoso Central/terapia , Humanos , Inflamação/imunologia , Inflamação/terapia , Doenças Neurodegenerativas/terapia
20.
Cell Rep ; 17(9): 2445-2459, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27840052

RESUMO

Extensive transcriptional and ontogenetic diversity exists among normal tissue-resident macrophages, with unique transcriptional profiles endowing the cells with tissue-specific functions. However, it is unknown whether the origins of different macrophage populations affect their roles in malignancy. Given potential artifacts associated with irradiation-based lineage tracing, it remains unclear if bone-marrow-derived macrophages (BMDMs) are present in tumors of the brain, a tissue with no homeostatic involvement of BMDMs. Here, we employed multiple models of murine brain malignancy and genetic lineage tracing to demonstrate that BMDMs are abundant in primary and metastatic brain tumors. Our data indicate that distinct transcriptional networks in brain-resident microglia and recruited BMDMs are associated with tumor-mediated education yet are also influenced by chromatin landscapes established before tumor initiation. Furthermore, we demonstrate that microglia specifically repress Itga4 (CD49D), enabling its utility as a discriminatory marker between microglia and BMDMs in primary and metastatic disease in mouse and human.


Assuntos
Neoplasias Encefálicas/patologia , Macrófagos/patologia , Animais , Sequência de Bases , Células da Medula Óssea/patologia , Neoplasias Encefálicas/genética , Linhagem da Célula , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Glioma/genética , Glioma/patologia , Humanos , Integrina alfa4/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Camundongos , Microglia/metabolismo , Microglia/patologia , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA