Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4712, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830888

RESUMO

Low-energy consumption seawater electrolysis at high current density is an effective way for hydrogen production, however the continuous feeding of seawater may result in the accumulation of Cl-, leading to severe anode poisoning and corrosion, thereby compromising the activity and stability. Herein, CoFeAl layered double hydroxide anodes with excellent oxygen evolution reaction activity are synthesized and delivered stable catalytic performance for 350 hours at 2 A cm-2 in the presence of 6-fold concentrated seawater. Comprehensive analysis reveals that the Al3+ ions in electrode are etched off by OH- during oxygen evolution reaction process, resulting in M3+ vacancies that boost oxygen evolution reaction activity. Additionally, the self-originated Al(OH)n- is found to adsorb on the anode surface to improve stability. An electrode assembly based on a micropore membrane and CoFeAl layered double hydroxide electrodes operates continuously for 500 hours at 1 A cm-2, demonstrating their feasibility in brine electrolysis.

2.
Nat Commun ; 15(1): 1973, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438342

RESUMO

Seawater electrolysis offers a renewable, scalable, and economic means for green hydrogen production. However, anode corrosion by Cl- pose great challenges for its commercialization. Herein, different from conventional catalysts designed to repel Cl- adsorption, we develop an atomic Ir catalyst on cobalt iron layered double hydroxide (Ir/CoFe-LDH) to tailor Cl- adsorption and modulate the electronic structure of the Ir active center, thereby establishing a unique Ir-OH/Cl coordination for alkaline seawater electrolysis. Operando characterizations and theoretical calculations unveil the pivotal role of this coordination state to lower OER activation energy by a factor of 1.93. The Ir/CoFe-LDH exhibits a remarkable oxygen evolution reaction activity (202 mV overpotential and TOF = 7.46 O2 s-1) in 6 M NaOH+2.8 M NaCl, superior over Cl--free 6 M NaOH electrolyte (236 mV overpotential and TOF = 1.05 O2 s-1), with 100% catalytic selectivity and stability at high current densities (400-800 mA cm-2) for more than 1,000 h.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA