Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Fish Shellfish Immunol ; 144: 109275, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081443

RESUMO

MicroRNAs play crucial roles in various biological processes, including but not limited to differentiation, development, disease, and immunity. However, their immunoregulatory roles in half-smooth tongue sole are lacking. Our previous studies indicated that miR-722 could target C5aR1 to modulate the complement pathway to alleviate inflammatory response and even affect the mortality after the bacterial infection with Vibrio anguillarum. Driven by the purpose of revealing the underlying mechanisms, in this study, we investigated the effects of miR-722 on the gene expression and alternative splicing (AS) in the liver of half-smooth tongue sole after Vibrio anguillarum infection, with the approach of miR-722 overexpression/silencing and subsequent RNA-seq. Among the different comparisons, the I group (miR-722 inhibitor and V. anguillarum) versus blank control (PBS) exhibited the highest number of differentially expressed genes (DEGs), suggesting that the immune response was overactivated after inhibiting the miR-722. In addition, enrichment analyses were performed to reveal the functions of DEGs and differential AS (DAS) genes, reflecting the enrichment of RNA splicing and immune-related pathways including NF-κB and T cell receptor signaling pathway. Comparing the M group (miR-722 mimic and V. anguillarum) with the negative control (random sequence and V. anguillarum), two immune-related genes, cd48 and mapk8, were differentially expressed, of which mapk8 was also differentially spliced, indicating their importance in the immune response. Furthermore, representative gene analysis was performed, suggesting their corresponding functional changes due to AS. To verify the RNA-seq data, quantitative real-time PCR was employed with twenty pairs of primers for DEGs and DAS events. Overall, our results demonstrated that miR-722 could mediate the transcriptome-wide changes of gene expression and AS in half-smooth tongue sole, and provided insights into the regulatory role of miR-722 in immune responses, laying the foundation for further functional analyses and practical applications in aquaculture.


Assuntos
Doenças dos Peixes , Linguados , MicroRNAs , Vibrioses , Vibrio , Animais , Processamento Alternativo , Vibrio/fisiologia , Transcriptoma , Fígado/metabolismo , Peixes/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Perfilação da Expressão Gênica/veterinária
2.
Fish Shellfish Immunol ; : 109706, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897310

RESUMO

The complement component 5a/complement component 5 receptor 1 (C5a/C5aR1) pathway plays a crucial role in the onset and development of inflammation, but relevant studies in fish are lacking. In this study, we successfully characterized the relationship between half-smooth tongue sole (Cynoglossus semilaevis) C5aR1 (CsC5aR1) and bacterial inflammation. First, we showed that the overexpression of CsC5aR1 significantly increased bacterial pathological damage in the liver and intestine, whereas inhibition attenuated the damage. The in vitro experiments suggested that CsC5aR1 was able to positively regulate the phagocytic activity and respiratory burst of tongue sole macrophages. In terms of both transcriptional and translational levels, overexpression/inhibition of CsC5aR1 was followed by a highly consistent up-regulation/decrease of its downstream canonical inflammatory factor interleukin-6 (CsIL-6). Furthermore, we stimulated macrophages by lipopolysaccharide (LPS) and lipoteichoic acid (LTA) and found a broad-spectrum response to bacterial infections by the C5a/C5aR1 complement pathway together with the downstream inflammatory factor CsIL-6. Subsequently, we directly elucidated that CsIL-6 is an indicator of C5a/C5aR1-mediated inflammation at different infection concentrations, different infectious bacteria (Vibrio anguillarum and Mycobacterium marinum), and different detection levels. These results might provide a new inflammation bio-marker for early warning of bacteria-induced hyperinflammation leading to fish mortality and a promising target for the treatment of bacterial inflammation in teleost.

3.
Fish Shellfish Immunol ; 141: 109043, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37673387

RESUMO

Frequently occurred bacterial diseases have seriously affected the aquaculture industry of half-smooth tongue sole (Cynoglossus semilaevis). Notably, vibriosis, with Vibrio anguillarum as one of the causative pathogens, is the most severe bacterial disease with severe inflammatory response of the host, leading to high mortality rates. In the present study, we explored the relationship between bacterial concentrations and host mortality, inflammatory reaction, and immune response in half-smooth tongue sole after infection with V. anguillarum at different concentrations (Treatment 1, 6.4 × 105 CFU/mL; Treatment 2, 6.4 × 106 CFU/mL). The mortality of Treatment 2 (77.5%) was significantly higher than that of Treatment 1 (10%), corresponding with bacterial concentrations. Although the number of deaths varies, intensive deaths were observed within 24 h post infection (hpi) in both bacterial concentration groups. Histopathological analyses revealed that fish tissues were most severely damaged at 24 or 48 hpi, and Treatment 2 was more severe than Treatment 1. A qRT-PCR-based detection method with virulence factor gene empA was established to quantify the bacterial loads in various tissues, and the bacterial loads were the highest at 24 hpi in Treatment 2, and at 48 hpi in Treatment 1. Additionally, the expression levels of complement genes (C5a, C3, C5, and C6), inflammatory factors (IL-1ß, TNF-α, and IL-10), and other immune-related genes (jak2, NF-κB1, stat3, and tlr3) were increased in various tissues after infection in both treatment groups, with most genes being most expressed at 24 or 48 hpi, and expression levels of inflammatory factors in Treatment 2 were higher than those in Treatment 1. Moreover, the expression of C5a was positively correlated with that of proinflammatory cytokines in both bacterial concentration groups. According to the results of this study, 24-48 hpi was a key node for early vibriosis detection and intervention. Compared with the low mortality of Treatment 1, the mass death of fish in Treatment 2 was suggested to be caused by uncontrolled excessive inflammatory reaction induced by the overactivation of complement system, especially C5a. We believe these results could provide theoretical basis for prevention, evaluation, and treatment of vibrio disease in tongue sole aquaculture, and lay a solid foundation for future functional analyses.

4.
Fish Shellfish Immunol ; 139: 108873, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37271327

RESUMO

The complement system is essential to host defense, but its excessive activation caused by severe pathogen invasion is a driving force in adverse inflammatory. The binding of complement component 5a (C5a) and complement component 5a receptor 1 (C5aR1) is the key to trigger complement-mediated inflammatory response in mammals. However, the role of C5a-C5aR1 axis in fish immune response remains obscure. In this study, the role of C5a-C5aR1 axis of zebrafish (Danio rerio) after serious infection with Aeromonas hydrophila was investigated. C5a and C5aR1 of zebrafish were cloned, with CDS sequences of 228 and 1041 bp, respectively, and they were widely expressed in various tissues with the highest expression in the liver and spleen, respectively. The survival of zebrafish was closely correlated to the dose of A. hydrophila. The cytokine storm occurred at high concentrations of A. hydrophila infection. At 24 h post infection (hpi), the expression of C5a and C5aR1 in the spleen increased 26.8-fold and 9.9-fold in treatment group 1 (TG1, 3.0 × 107 CFU/mL) (P < 0.01), and 4.7-fold and 3.4-fold in treatment group 2 (TG2, 1.0 × 107 CFU/mL) (P < 0.05), respectively. Correspondingly, proinflammatory cytokines interleukin-1ß (IL-1ß), interleukin-8 (IL-8), and interleukin-17 (IL-17) were positively correlated to C5a and C5aR1 at mRNA and protein expression levels. The expression of IL-1ß was significantly increased in the spleen at 6 hpi, with a 599.2-fold and 203.2-fold upregulation in TG1 and TG2 (P < 0.001), respectively. Moreover, after inhibition of C5a-C5aR1 binding treated with C5aR1 antagonist (W-54011), zebrafish showed lower expression of C5a, C5aR1, and cytokines, less intestinal damage, and significantly enhancement of survival (P < 0.05) after A. hydrophila challenge. This study revealed that the inflammatory effect of C5a was achieved by binding to C5aR1 in zebrafish, providing novel insights into using C5a-C5aR1 axis as an effective target to reduce bacterial inflammation and disease in fish.


Assuntos
Aeromonas hydrophila , Peixe-Zebra , Animais , Complemento C5a/metabolismo , Inflamação/genética , Citocinas/genética , Mamíferos/metabolismo
5.
Int J Mol Sci ; 24(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36982906

RESUMO

The Pacific white shrimp Litopenaeus vannamei is the most economically important crustacean in the world. The growth and development of shrimp muscle has always been the focus of attention. Myocyte Enhancer Factor 2 (MEF2), a member of MADS transcription factor, has an essential influence on various growth and development programs, including myogenesis. In this study, based on the genome and transcriptome data of L. vannamei, the gene structure and expression profiles of MEF2 were characterized. We found that the LvMEF2 was widely expressed in various tissues, mainly in the Oka organ, brain, intestine, heart, and muscle. Moreover, LvMEF2 has a large number of splice variants, and the main forms are the mutually exclusive exon and alternative 5' splice site. The expression profiles of the LvMEF2 splice variants varied under different conditions. Interestingly, some splice variants have tissue or developmental expression specificity. After RNA interference into LvMEF2, the increment in the body length and weight decreased significantly and even caused death, suggesting that LvMEF2 can affect the growth and survival of L. vannamei. Transcriptome analysis showed that after LvMEF2 was knocked down, the protein synthesis and immune-related pathways were affected, and the associated muscle protein synthesis decreased, indicating that LvMEF2 affected muscle formation and the immune system. The results provide an important basis for future studies of the MEF2 gene and the mechanism of muscle growth and development in shrimp.


Assuntos
Perfilação da Expressão Gênica , Penaeidae , Animais , Fatores de Transcrição MEF2/genética , Transcriptoma , Regulação da Expressão Gênica , Intestinos , Penaeidae/genética , Imunidade Inata/genética
6.
Fish Shellfish Immunol ; 104: 101-110, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32464273

RESUMO

The ninth complement component (C9) is a terminal complement component (TCC) that is involved in creating the membrane attack complex (MAC) on the target cell surface. In this study, the CsC9 (C9 of Cynoglossus semilaevis) cDNA sequence was cloned and characterized. The full-length CsC9 cDNA measured 2,150 bp, containing an open reading frame (ORF) of 1,803 bp, a 5'-untranslated region (UTR) of 24 bp and a 3'-UTR of 323 bp. A domain search revealed that the CsC9 protein contains five domains, including two TSP1s, an LDLRA, an EGF, and a MACPF. Quantitative real-time PCR analysis showed that CsC9 at the mRNA level was expressed in all the tested tissues, with the highest expression being observed in the liver. CsC9 expression is significantly upregulated in the tested tissues after challenge with Vibrio anguillarum. To further characterize the role of CsC9, peripheral blood mononuclear cells of C. semilaevis were used for transcriptome analysis after incubation with recombinant CsC9 (rCsC9) protein. A total of 3,775 significant differentially expressed genes (DEGs) were identified between the control and the rCsC9-treated group, including 2,063 upregulated genes and 1,712 downregulated genes. KEGG analyses revealed that the DEGs were enriched in cell adhesion molecules, cytokine-cytokine receptor interactions, T cell receptor signaling pathways, B cell receptor signaling pathways and Toll-like receptor signaling pathways. The results of this study indicate that in addition to participating in MAC formation, CsC9 might play multiple roles in the innate and adaptive immunity of C. semilaevis.


Assuntos
Complemento C9/genética , Complemento C9/imunologia , Doenças dos Peixes/imunologia , Linguados/genética , Linguados/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Imunidade Adaptativa , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Complemento C9/química , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Leucócitos/metabolismo , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Alinhamento de Sequência/veterinária , Transcriptoma , Vibrio , Vibrioses
7.
Fish Shellfish Immunol ; 95: 679-687, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31678184

RESUMO

Collectin 11 (CL-11, also known as collectin kidney-1, CL-K1), a new member of the vertebrate C-type lectin superfamily, plays an important role in innate immunity as a pattern recognition molecule of the lectin complement pathway. However, little is known about CL-11 in teleosts. In the present study, a CL-11 homolog was identified and characterized from half-smooth tongue sole (Cynoglossus semilaevis) (designated as CsCL-11). The full-length cDNA of CsCL-11 is 1220 bp long and includes a 5'untranslated region (5'-UTR) of 180 bp, a 3'-UTR of 218 bp and an open reading frame (ORF) of 819 bp encoding 273 amino acids. Multiple sequence alignment revealed that the deduced CsCL-11 protein has the typical modular architecture (EPN and WTD) conserved throughout vertebrates, suggesting a conserved function of CsCL-11. Tissue expression profile analysis by quantitative real-time PCR (qRT-PCR) showed CsCL-11 to be ubiquitously distributed in tissues and highly expressed in the ovary and liver. A pattern of significant upregulation of CsCL-11 expression was observed in the blood, spleen, head kidney and gill at 6 h, 12 h and 24 h after infection with Vibrio anguillarum, and western blotting showed that natural CsCL-11 protein levels in the blood were significantly increased after V. anguillarum infection. Moreover, by binding to various bacteria, recombinant CsCL-11 (rCsCL-11) expressed in HEK-293 T cells displayed strong antibacterial activity. Taken together, these results suggest that CsCL-11 is a unique C-type lectin that is likely involved in host defense against bacterial infection. To our knowledge, this is the first study on CL-11 in marine fish.


Assuntos
Colectinas/genética , Proteínas do Sistema Complemento/imunologia , Proteínas de Peixes/genética , Linguados/imunologia , Vibrioses/veterinária , Animais , Colectinas/classificação , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/classificação , Linguados/genética , Perfilação da Expressão Gênica , Vibrioses/imunologia
8.
Fish Shellfish Immunol ; 89: 271-280, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30940580

RESUMO

Lysin motif (LysM) is involved in chitin, peptidoglycan and other structurally-related oligosaccharides recognition and binding, and it is important for the biological processes of responsing to bacterial and viral infections and pathogen defense. LysM is also a widely spread protein, ranging from prokaryotes to eukaryotes, including bacteria, plants and mammals. However, research of LysM in teleosts especially in marine fish was rarely scarce. In the present study, four novel LysM domain-containing proteins in turbot (Scophthalmus maximus), named as SmLysMd1, SmLysMd2, SmLysMd3, and SmLysMd4, were cloned and identified firstly. The full-length cDNA of SmLysMd1 was 1235 bp with a 678 bp ORF, capable of encoding a peptide of 225 amino acids. The complete cDNA sequence of SmLysMd2 was 1273 bp, and contained a 675 bp ORF, encoding a predicted protein of 224 amino acids. The full-length of SmLysMd3 cDNA was 2132 bp, containing a ORF of 987 bp, with a ORF of encoding 328 amino acids. The full-length SmLysMd4 cDNA was 1115 bp contained a 888 bp ORF, encoding 295 amino acids. And all the four predicated proteins contained a specific LYSM domain. Moreover, SmLysMd1 and SmLysMd2 belong to the intracellular non-secretory types, and SmLysMd3 and SmLysMd4 belong to the anchored transmembrane types. In addition, the four SmLysMd were ubiquitously expressed in all the examined tissues. Moreover, the SmLysMds levels were up-regulated in muscle and liver, and had a reduce tendency immediately in different degree following Vibrio vulnificus challenge, indicating that the turbot LysM could be participant in the immune responses to bacterial infections. The present result of LysM in turbot for the first time in a marine fish will provide foundation knowledge for the functions studies of LysM in immune responses. Further studies should be carried out to better understand their immune mechanism in turbot and other teleosts.


Assuntos
Doenças dos Peixes/imunologia , Linguados/genética , Linguados/imunologia , Imunidade Inata , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Proteínas de Membrana/química , Domínios Proteicos , Alinhamento de Sequência/veterinária , Vibrioses/imunologia , Vibrioses/veterinária , Vibrio vulnificus/fisiologia
9.
Mar Drugs ; 17(4)2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30934847

RESUMO

This study was initiated to screen for marine bacterial agents to biocontrol Magnaporthe grisea, a serious fungal pathogen of cereal crops. A bacterial strain, isolated from the cold seep in deep sea, exhibited strong growth inhibition against M. grisea, and the strain was identified and designated as Bacillus sp. CS30. The corresponding antifungal agents were purified by acidic precipitation, sequential methanol extraction, Sephadex LH-20 chromatography, and reversed phase high-performance liquid chromatography (RP-HPLC), and two antifungal peaks were obtained at the final purification step. After analysis by mass spectrometry (MS) and tandem MS, two purified antifungal agents were deduced to belong to the surfactin family, and designated as surfactin CS30-1 and surfactin CS30-2. Further investigation showed that although the antifungal activity of surfactin CS30-1 is higher than that of surfactin CS30-2, both of them induced the increased generation of reactive oxygen species (ROS) and caused serious damage to the cell wall and cytoplasm, thus leading to the cell death of M. grisea. Our results also show the differences of the antifungal activity and antifungal mechanism of the different surfactin homologs surfactin CS30-1 and surfactin CS30-2, and highlight them as potential promising agents to biocontrol plant diseases caused by M. grisea.


Assuntos
Antifúngicos/farmacologia , Bacillus/metabolismo , Lipopeptídeos/farmacologia , Magnaporthe/efeitos dos fármacos , Tensoativos/farmacologia , Antifúngicos/isolamento & purificação , Antifúngicos/metabolismo , Bactérias/metabolismo , Lipopeptídeos/biossíntese , Lipopeptídeos/isolamento & purificação , Magnaporthe/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/terapia , Espécies Reativas de Oxigênio/metabolismo , Tensoativos/isolamento & purificação , Tensoativos/metabolismo
10.
Fish Shellfish Immunol ; 72: 658-669, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29146450

RESUMO

Complement component C8, which mediates membrane attack complex formation and bacterial lysis, plays important roles in the complement system. The cDNA sequences of the C8α, C8ß and C8γ genes were cloned from half-smooth tongue sole (Cynoglossus semilaevis). Full-length cDNA of CsC8α (C8α of C. semilaevis), CsC8ß and CsC8γ was 1990, 2219 and 886 bp, respectively, which contained open reading frames of 1797, 1749 and 666 bp, encoding 598, 582 and 221 amino acids, respectively. The deduced proteins of CsC8α, CsC8ß and CsC8γ showed the closest amino acid similarity to C8α (73%) of Siniperca chuatsi, C8ß (76%) of Oryzias latipes and C8γ (72%) of Takifugu rubripes, respectively. The highest expression level of CsC8α, CsC8ß and CsC8γ among the 13 normal tissues was observed in liver tissue, followed by much lower levels in other tissues. After infection with Vibrio anguillarum, CsC8α, CsC8ß and CsC8γ were significantly up-regulated in all of the detected tissues, including the intestine, liver, gill, head kidney, blood and spleen. Then, a recombinant expression plasmid was constructed, and the recombinant CsC8α protein was expressed in GS115 pichia pastoris yeast. Furthermore, to investigate the biological functions of recombinant CsC8α, an antibacterial assay was performed, and the results showed that recombinant CsC8α obviously inhibited growth of V. anguillarum, Edwardsiella tarda and Vibrio parahaemolyticus. Taken together, these results suggest that CsC8α, CsC8ß and CsC8γ may play important roles in the immune defense of C. semilaevis.


Assuntos
Complemento C8/genética , Complemento C8/imunologia , Doenças dos Peixes/imunologia , Linguados/genética , Linguados/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Humoral/genética , Sequência de Aminoácidos , Animais , Infecções Bacterianas/imunologia , Sequência de Bases , Complemento C8/química , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica , Micoses/imunologia , Filogenia , Alinhamento de Sequência/veterinária
11.
Fish Shellfish Immunol ; 65: 256-266, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28433719

RESUMO

In the present study, the peripheral blood cells of half smooth tongue sole (Cynoglossus semilaevis) were examined by blood smear under the light microscopy. The proportion of main types of blood cells are as following: erythrocyte occupied the majority (92.3%), followed by thrombocyte (4.15%), granulocyte (1.7%), lymphocyte (1.5%) and monocyte (0.3%), respectively. Meanwhile, the isolation method of monocytes was established, by density gradient centrifugation to isolate mononuclear leukocytes of peripheral blood. In primary culture, the monocytes were adhered to the bottom of the flask without feeder cells and separated easily with suspended leukocytes in the medium in 3 h. After suspended leukocytes were removed, the monocytes multiplied rapidly with the two doubly during the 24 h, then the cells proliferated and kept stable until 48 h. When co-cultured with suspended leukocytes after three days, the monocytes could derive to typical macrophages, of which the size enlarged significantly and showed various forms such as like fried eggs, and giant irregular shape with pseudopod because cells fusion or deformation occurred until macrophages died in about two weeks. Monocytes showed strong respiratory burst activity after treated with Phorbol ester PMA and challenged by bacteria respectively. In addition, macrophage of half smooth tongue sole had typical macrophage features such as phagocytic capability, positive esterase activity, and the considerable expression of M-CSFR, MHC-II, IL-6, IL-10, TNF and arginase genes. That arginase expression in macrophages (3d and 5d after differentiation) was upregulated fluctuant suggest that the cultivation was mixture of alternatively activated type macrophage (M2) in the majority while the classically activated type (M1) win the minority. Furthermore, MHC-Ⅱ, M-CSFR and IL-6 were significantly induced following LPS challenge. Collectively, the present study will be useful for the study on half smooth tongue sole immune systems and immune function.


Assuntos
Doenças dos Peixes/imunologia , Linguados , Imunidade Inata , Macrófagos/metabolismo , Monócitos/metabolismo , Vibrioses/veterinária , Animais , Doenças dos Peixes/genética , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Expressão Gênica/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Fagocitose , Explosão Respiratória , Vibrio/fisiologia , Vibrioses/genética , Vibrioses/imunologia , Vibrioses/microbiologia
12.
Mar Drugs ; 15(7)2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28698510

RESUMO

Pseudomonas stutzeri 273 is a marine bacterium producing exopolysaccharide 273 (EPS273) with high anti-biofilm activity against P. aeruginosa PAO1. Here, the complete genome of P.stutzeri 273 was sequenced and the genome contained a circular 5.03 Mb chromosome. With extensive analysis of the genome, a genetic locus containing 18 genes was predicted to be involved in the biosynthesis of EPS273. In order to confirm this prediction, two adjacent genes (eps273-H and eps273-I) encoding glycosyltransferases and one gene (eps273-O) encoding tyrosine protein kinase within the genetic locus were deleted and biosynthesis of EPS273 was checked in parallel. The molecular weight profile of EPS purified from the mutant Δeps273-HI was obviously different from that purified from wild-type P.stutzeri 273, while the corresponding EPS was hardly detected from the mutant Δeps273-O, which indicated the involvement of the proposed 18-gene cluster in the biosynthesis of EPS273. Moreover, the mutant Δeps273-HI had the biofilm formed earlier compared with the wild type, and the mutant Δeps273-O almost completely lost the ability of biofilm formation. Therefore, EPS273 might facilitate the biofilm formation for its producing strain P.stutzeri 273 while inhibiting the biofilm formation of P. aeruginosa PAO1. This study can contribute to better understanding of the biosynthesis of EPS273 and disclose the biological function of EPS273 for its producing strain P.stutzeri 273.


Assuntos
Genes Bacterianos/genética , Genoma Bacteriano/genética , Família Multigênica/genética , Polissacarídeos Bacterianos/genética , Pseudomonas stutzeri/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Biofilmes , Pseudomonas aeruginosa/genética , Análise de Sequência/métodos
13.
Physiol Genomics ; 48(7): 464-76, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27199458

RESUMO

As the Russian sturgeon (Acipenser gueldenstaedtii) is an important food and is the main source of caviar, it is necessary to discover the genes associated with its sex differentiation. However, the complicated life and maturity cycles of the Russian sturgeon restrict the accurate identification of sex in early development. To generate a first look at specific sex-related genes, we sequenced the transcriptome of gonads in different development stages (1, 2, and 5 yr old stages) with next-generation RNA sequencing. We generated >60 million raw reads, and the filtered reads were assembled into 263,341 contigs, which produced 38,505 unigenes. Genes involved in signal transduction mechanisms were the most abundant, suggesting that development of sturgeon gonads is under control of signal transduction mechanisms. Differentially expressed gene analysis suggests that more genes for protein synthesis, cytochrome c oxidase subunits, and ribosomal proteins were expressed in female gonads than in male. Meanwhile, male gonads expressed more transposable element transposase, reverse transcriptase, and transposase-related genes than female. In total, 342, 782, and 7,845 genes were detected in intersex, male, and female transcriptomes, respectively. The female gonad expressed more genes than the male gonad, and more genes were involved in female gonadal development. Genes (sox9, foxl2) are differentially expressed in different sexes and may be important sex-related genes in Russian sturgeon. Sox9 genes are responsible for the development of male gonads and foxl2 for female gonads.


Assuntos
Peixes/genética , Gônadas/metabolismo , Diferenciação Sexual/genética , Transcriptoma/genética , Animais , Feminino , Proteínas de Peixes/genética , Peixes/metabolismo , Masculino , Federação Russa , Transdução de Sinais/genética
14.
Fish Shellfish Immunol ; 43(1): 209-18, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25543033

RESUMO

Half-smooth tongue sole (Cynoglossus semilaevis) is one of the most valuable marine aquatic species in Northern China. Given to the rapid development of aquaculture industry, the C. semilaevis was subjected to disease-causing bacteria Vibrio anguillarum. It therefore is indispensable and urgent to understand the mechanism of C. semilaevis host defense against V. anguillarum infection. In the present study, the extensively analysis at the transcriptome level for V. Anguillarum disease in tongue sole was carried out. In total, 94,716 high quality contigs were generated from 75,884,572 clean reads in three libraries (HOSG, NOSG, and CG). 22,746 unigenes were identified when compared with SwissProt, an NR protein database and NT nucleotide database. 954 genes exhibiting the differentially expression at least one pair of comparison in all three libraries were identified. GO enrichment for these genes revealed gene response to biotic stimulus, immune system regulation, and immune response and cytokine production. Further, the pathways such as complement and coagulation cascades and Vibrio cholerae infection pathways were enriched in defensing of pathogen. Besides, 13,428 SSRs and 118,239 SNPs were detected in tongue sole, providing further support for genetic variation and marker-assisted selection in future. In summary, this study identifies several putative immune pathways and candidate genes deserving further investigation in the context of development of therapeutic regimens and lays the foundation for selecting resistant lines of C. semilaevis against V. anguillarum.


Assuntos
Doenças dos Peixes/genética , Proteínas de Peixes/genética , Linguados , Vibrioses/veterinária , Vibrio/fisiologia , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/metabolismo , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica/veterinária , Biblioteca Gênica , Repetições de Microssatélites , Especificidade de Órgãos , Polimorfismo de Nucleotídeo Único , Transcriptoma , Vibrioses/genética , Vibrioses/imunologia , Vibrioses/metabolismo
15.
Fish Physiol Biochem ; 41(3): 673-83, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25724869

RESUMO

A new cell line was established from half-smooth tongue sole Cynoglossus semilaevis pseudomale gonad (CSPMG). Primary culture was initiated from gonad tissues pieces, and the CSPMG cells were cultured at 24 °C in Dulbecco's modified Eagle medium/F12 medium (1:1) (pH7.0), supplemented with 20 % fetal bovine serum, basic fibroblast growth factor, epidermal growth factor, insulin-like growth factor-I, 2-mercaptoethanol, penicillin and streptomycin. The cultured CSPMG cells, in fibroblast shape, proliferated to 100 % confluency 10 days later and had been subcultured to passage 109. Chromosome analyses indicated that the CSPMG cells exhibited chromosomal aneuploidy with a modal chromosome number of 42, which displayed the normal diploid karyotype of half-smooth tongue sole (2n = 42t, NF = 42). Reverse transcription polymerase chain reaction revealed CSPMG cells could express gonad somatic cell functional genes Sox9a, Wt1a and weakly germ cell marker gene Vasa, but not male specific gene Dmrt1. Transfection experiment demonstrated that CSPMG cells transfected with pEGFP-N3 plasmid and small RNA could express green and red fluorescence signals with high transfection efficiency. In conclusion, a continuous CSPMG cell line has been established successfully. The cell line might serve as a valuable tool for studies on the mechanism of sex determination, sex reversal and gonad development in flatfish.


Assuntos
Técnicas de Cultura de Células/veterinária , Linhagem Celular , Meios de Cultura/química , Linguados , Gônadas/citologia , Animais , Técnicas de Cultura de Células/métodos , Proliferação de Células/fisiologia , Análise Citogenética/veterinária , Fator de Crescimento Epidérmico/química , Fator 2 de Crescimento de Fibroblastos/química , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/metabolismo , Mercaptoetanol/química , Penicilinas/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Fatores de Transcrição SOX9/metabolismo , Somatomedinas/química , Estreptomicina/química , Proteínas WT1/metabolismo , Proteína Vermelha Fluorescente
16.
Mol Biol Rep ; 41(6): 4093-101, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24584575

RESUMO

Interferon regulatory factor 1 (IRF1) was known to play key roles in antiviral defense in several species, and some other important biological processes. In this report, full length cDNA of IRF1 from Cynoglossus semilaevis (CsIRF1) was identified. It was of 1,455 bp, containing a 5' UTR of 104 bp, a 3' UTR of 541 bp with a poly (A) tail and an ORF of 810 bp encoding a putative protein of 269 amino acids. The putative CsIRF1protein contained one conserved IRF domain (1-113aa), and two low complexity regions (140-158aa and 230-242aa, respectively). Phylogenetic analysis showed that CsIRF1 was conserved in the teleost evolutionary branch, which was independent of mammalian, birds and amphibians. Additionally, CsIRF1 had the 96% homology with marine fishes, while 66% with freshwater fishes. The expression profiles of CsIRF1was analyzed by quantitative real-time PCR in healthy tissues and in immune tissues challenged with different pathogens [Vibrio anguillarum and Lymphocystis disease virus (LCDV)], respectively. CsIRF1 was widely expressed in healthy tissues of Cynoglossus semilaevis and with the highest expression in blood, as much as 19 times of that in liver. V. anguillarum and LCDV both induced the CsIRF1 gene expression distinctly in liver, with the peak value reached to 98-fold at 6 h and 25-fold at 24 h, respectively. The bacteria induced CsIRF1 suddenly up-expression in each detected tissues. However, at the initial stage of the challenge of virus LCDV, the CsIRF1 expression in blood and spleen were up regulated; on the contrary, its expression in liver and head kidney were down regulated, 0.3 and 0.4-fold 6 h post virus injection, respectively. These results suggested that CsIRF1 gene might involve in not only antiviral activity but also antibacterial procedure, indicating its vital role in Cynoglossus semilaevis innate defense system.


Assuntos
Peixes/genética , Fator Regulador 1 de Interferon/biossíntese , Fator Regulador 1 de Interferon/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Peixes/virologia , Linguados , Regulação da Expressão Gênica no Desenvolvimento , Fator Regulador 1 de Interferon/metabolismo , Fígado/metabolismo , Filogenia , Baço/metabolismo , Vibrioses/genética
17.
Gene ; 921: 148523, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38703863

RESUMO

The Pacific white shrimp Litopenaeus vannamei is a representative species of decapod crustacean and an economically important marine aquaculture species worldwide. However, research on the genes involved in muscle growth and development in shrimp is still lacking. MyoD is recognized as a crucial regulator of myogenesis and plays an essential role in muscle growth and differentiation in various animals. Nonetheless, little information is available concerning the function of this gene among crustaceans. In this study, we identified a sequence of the MyoD gene (LvMyoD) with a conserved bHLH domain in the L. vannamei genome. Phylogenetic analysis revealed that both the overall protein sequence and specific functional sites of LvMyoD are highly conserved with those of other crustacean species and that they are evolutionarily closely related to vertebrate MyoD and Myf5. LvMyoD expression is initially high during early muscle development in shrimp and gradually decreases after 40 days post-larval development. In adults, the muscle-specific expression of LvMyoD was confirmed through RT-qPCR analysis. Knockdown of LvMyoD inhibited the growth of the shrimp in body length and weight. Histological observation and transcriptome sequencing of muscle samples after RNA interference (RNAi) revealed nuclear agglutination and looseness in muscle fibers. Additionally, we observed significant effects on the expression of genes involved in heat shock proteins, myosins, actins, protein synthesis, and glucose metabolism. These findings suggest that LvMyoD plays a critical role in regulating muscle protein synthesis and muscle cell differentiation. Overall, this study highlights the involvement of LvMyoD in myogenesis and muscle growth, suggesting that it is a potentially important regulatory target for shrimp breeding efforts.


Assuntos
Proteína MyoD , Penaeidae , Filogenia , Animais , Penaeidae/genética , Penaeidae/crescimento & desenvolvimento , Penaeidae/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo , Desenvolvimento Muscular/genética , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Sequência de Aminoácidos
18.
Sci Total Environ ; 942: 173427, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38797400

RESUMO

The recurring appearance of Ulva prolifera green tides has become a pressing environmental issue, especially for marine transportation, tourism, and aquaculture in the stage of decomposition. An abundance of decaying U. prolifera leads to water acidification, hypoxia and pathogenic microorganism proliferation, threatening marine germplasm resources, particularly benthic organisms with weak escape ability. Epigenetic modification is considered to be one of the molecular mechanisms involved in the plastic adaptive response to environmental changes. However, few studies concerning the specific impact of decaying green tide on benthic animals at the epigenetic level. In this study, decomposing algal effluents of U. prolifera, sediments containing uncorrupted U. prolifera, pathogenic microorganism were considered as impact factors, to reveal the effect of decaying U. prolifera on marine economic benthic species, Paralichthys olivaceus, using both field and laboratory simulation experiments. Field simulation experiment showed higher mortality rates and serious histopathological damage than the laboratory simulation experiment. And both the decaying U. prolifera and the sediment containing U. prolifera were harmful to P. olivaceus. Genome-wide DNA methylation and transcription correlation analyses showed that the response of P. olivaceus to green tide stress and bacterial infection was mainly mediated by immune signaling pathways such as PI3K-Akt signaling pathway. DNA methylation regulates the expression of immune-related genes involved in the PI3K-Akt signaling pathway, which enables P. olivaceus to adapt to the adverse environmental stresses by resisting apoptosis. In summary, this research analyzed the potential role of P. olivaceus in decaying U. prolifera, which is of great significance for understanding the impact of decaying green tide on marine commercial fish and also provides some theoretical guidance for the proliferation and release of fish seedlings.


Assuntos
Metilação de DNA , Ulva , Animais , Linguados/genética , Expressão Gênica , Doenças dos Peixes/microbiologia
19.
Mar Pollut Bull ; 194(Pt A): 115410, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37595335

RESUMO

For 17 consecutive years, the outbreak of Ulva prolifera in the South Yellow Sea area of China has caused significant negative impacts on coastal ecological environment. However, its specific influence on fish immunity is rare. In this study, the juvenile Paralichthys olivaceus was exposed to fresh U. prolifera algae (FU) and decomposing algal effluent (DU). After short-term stress for 14 days, the histopathological and transcriptome analysis were performed to study the effect of U. prolifera decay on P. olivaceus. Histopathological analysis found that the liver, spleen and head kidneys of P. olivaceus were damaged after the short-term stress. The transcriptome results showed that the steroid biosynthesis signaling pathway and the PI3K-Akt signaling pathway were significantly enriched. Some immune related genes, including c1qc-like, dusp1, dusp16, HSP90 and metabolic related genes serotransferrin, were differentially expressed. These results highlighted the harmfulness of U. prolifera on marine fish, setting a solid foundation for further analyses.


Assuntos
Linguado , Ulva , Animais , Transcriptoma , Fosfatidilinositol 3-Quinases , Perfilação da Expressão Gênica , China
20.
Artigo em Inglês | MEDLINE | ID: mdl-37327728

RESUMO

Integrins (ITGs) are transmembrane heterodimer receptors with ITGα subunit and ITGß subunit, participating in various physiological processes, including immunity. At present, systematic research on ITGs in teleost is scarce, especially in half-smooth tongue sole (Cynoglossus semilaevis). In this study, a set of 28 ITG genes in half-smooth tongue sole have been identified and characterized. The phylogenetic analysis showed that ITGα and ITGß subunits were respectively classified into five and two clusters, consistent with previous studies. The selection pressure analysis indicated that most of ITG genes were under purifying selection, except for ITGα11b and ITGαL with positive selection. The expression profiles of eight selected ITG genes, including ITGα1, ITGα5, ITGα8, ITGα11, ITGß1, ITGß2, ITGß3, and ITGß8, were analyzed in healthy tissues and after infection with Vibrio anguillarum, revealed their implications in immune response. The study provided a comprehensive characterization and expression analysis of ITG genes in half-smooth tongue sole, setting a solid foundation for further functional studies and promising potential in disease control.


Assuntos
Linguados , Linguado , Vibrioses , Animais , Filogenia , Integrinas/genética , Integrinas/metabolismo , Perfilação da Expressão Gênica , Linguados/genética , Linguados/metabolismo , Vibrioses/genética , Vibrioses/veterinária , Linguado/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA