Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 12(14)2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31330846

RESUMO

Granulation is an important step during the production of urea granules. Most of the commercial binders used for granulation are toxic and non-biodegradable. In this study, a fully biodegradable and cost-effective starch-based binder is used for urea granulation in a fluidized bed granulator. The effect of binder properties such as viscosity, surface tension, contact angle, penetration time, and liquid bridge bonding force on granulation performance is studied. In addition, the effect of fluidized bed process parameters such as fluidizing air inlet velocity, air temperature, weight of primary urea particles, binder spray rate, and binder concentration is also evaluated using response surface methodology. Based on the results, binder with higher concentration demonstrates higher viscosity and higher penetration time that potentially enhance the granulation performance. The viscous Stokes number for binder with higher concentration is lower than critical Stokes number that increases coalescence rate. Higher viscosity and lower restitution coefficient of urea particles result in elastic losses and subsequent successful coalescence. Statistical analysis indicate that air velocity, air temperature, and weight of primary urea particles have major effects on granulation performance. Higher air velocity increases probability of collision, whereby lower temperature prevents binder to be dried up prior to collision. Findings of this study can be useful for process scale-up and industrial application.

2.
Trop Life Sci Res ; 29(1): 17-35, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29644013

RESUMO

The roles of multi-walled carbon nanotubes (MWNTs) and functionalised multiwalled carbon nanotubes (fMWNTs) in enhancing the efficacy of urea fertilizer (UF) as plant nutrition for local MR219 paddy variety was investigated. The MWNTs and fMWNTs were grafted onto UF to produce UF-MWNTs fertilizer with three different conditions, coded as FMU1 (0.6 wt. % fMWNTs), FMU2 (0.1 wt. % fMWNTs) and MU (0.6 wt. % MWNTs. The batches of MR219 paddy were systematically grown in accordance to the general practice performed by the Malaysian Agricultural Research and Development Institute (MARDI). The procedure was conducted using a pot under exposure to natural light at three different fertilization times; after a certain number of days of sowing (DAS) at 14, 35 and 55 days. Interestingly, it was found that the crop growth of plants treated with FMU1 and FMU2 significantly increased by 22.6% and 38.5% compared to plants with MU addition. Also, paddy treated with FMU1 produced 21.4% higher number of panicles and 35% more grain yield than MU while paddy treated with FMU2 gave 28.6% more number of panicles and 36% higher grain yield than MU, which implies the advantage of fMWNTs over MWNTs to be combined with UF as plant nutrition. The chemical composition and morphology of UF-MWNTs fertilizers which is further characterised by FTiR and FESEM confirmed the successful and homogeneous grafting of UF onto the fMWNTs.

3.
PLoS One ; 12(9): e0185122, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28934301

RESUMO

A novel symmetrical split ring resonator (SSRR) based microwave sensor with spurline filters for detecting and characterizing the properties of solid materials has been developed. Due to the weak perturbation in the interaction of material under test (MUT) and planar microwave sensor, spurline filters were embedded to the SSRR microwave sensor which effectively enhanced Q-factor with suppressing the undesired harmonic frequency. The spurline filter structures force the presented sensor to resonate at a fundamental frequency of 2.2 GHz with the capabilities of suppressing rejected harmonic frequency and miniaturization in circuit size. A wide bandwidth rejection is achieved by using double spurlines filters with high Q-factor achievement (up to 652.94) compared to single spurline filter. The new SSRR sensor with spurline filters displayed desired properties such as high sensitivity, accuracy, and performance with a 1.3% typical percentage error in the measurement results. Furthermore, the sensor has been successfully applied for detecting and characterizing solid materials (such as Roger 5880, Roger 4350, and FR4) and evidently demonstrated that it can suppress the harmonic frequency effectively. This novel design with harmonic suppression is useful for various applications such as food industry (meat, fruit, vegetables), biological medicine (derived from proteins and other substances produced by the body), and Therapeutic goods (antiseptics, vitamins, anti-psychotics, and other medicines).


Assuntos
Técnicas Biossensoriais/instrumentação , Micro-Ondas , Simulação por Computador , Equipamentos e Provisões Elétricas , Campos Eletromagnéticos , Desenho de Equipamento , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA