Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Sensors (Basel) ; 22(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35632142

RESUMO

Blockchain technology is gaining a lot of attention in various fields, such as intellectual property, finance, smart agriculture, etc. The security features of blockchain have been widely used, integrated with artificial intelligence, Internet of Things (IoT), software defined networks (SDN), etc. The consensus mechanism of blockchain is its core and ultimately affects the performance of the blockchain. In the past few years, many consensus algorithms, such as proof of work (PoW), ripple, proof of stake (PoS), practical byzantine fault tolerance (PBFT), etc., have been designed to improve the performance of the blockchain. However, the high energy requirement, memory utilization, and processing time do not match with our actual desires. This paper proposes the consensus approach on the basis of PoW, where a single miner is selected for mining the task. The mining task is offloaded to the edge networking. The miner is selected on the basis of the digitization of the specifications of the respective machines. The proposed model makes the consensus approach more energy efficient, utilizes less memory, and less processing time. The improvement in energy consumption is approximately 21% and memory utilization is 24%. Efficiency in the block generation rate at the fixed time intervals of 20 min, 40 min, and 60 min was observed.

2.
Sensors (Basel) ; 22(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36015869

RESUMO

Wireless sensor networks (WSNs) have recently been viewed as the basic architecture that prepared the way for the Internet of Things (IoT) to arise. Nevertheless, when WSNs are linked with the IoT, a difficult issue arises due to excessive energy utilization in their nodes and short network longevity. As a result, energy constraints in sensor nodes, sensor data sharing and routing protocols are the fundamental topics in WSN. This research presents an enhanced smart-energy-efficient routing protocol (ESEERP) technique that extends the lifetime of the network and improves its connection to meet the aforementioned deficiencies. It selects the Cluster Head (CH) depending on an efficient optimization method derived from several purposes. It aids in the reduction of sleepy sensor nodes and decreases energy utilization. A Sail Fish Optimizer (SFO) is used to find an appropriate route to the sink node for data transfer following CH selection. Regarding energy utilization, bandwidth, packet delivery ratio and network longevity, the proposed methodology is mathematically studied, and the results have been compared to identical current approaches such as a Genetic algorithm (GA), Ant Lion optimization (ALO) and Particle Swarm Optimization (PSO). The simulation shows that in the proposed approach for the longevity of the network, there are 3500 rounds; energy utilization achieves a maximum of 0.5 Joules; bandwidth transmits the data at the rate of 0.52 MBPS; the packet delivery ratio (PDR) is at the rate of 96% for 500 nodes, respectively.


Assuntos
Redes de Comunicação de Computadores , Internet das Coisas , Algoritmos , Animais , Conservação de Recursos Energéticos , Tecnologia sem Fio
3.
Sensors (Basel) ; 22(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35808508

RESUMO

Cloud providers create a vendor-locked-in environment by offering proprietary and non-standard APIs, resulting in a lack of interoperability and portability among clouds. To overcome this deterrent, solutions must be developed to exploit multiple clouds efficaciously. This paper proposes a middleware platform to mitigate the application portability issue among clouds. A literature review is also conducted to analyze the solutions for application portability. The middleware allows an application to be ported on various platform-as-a-service (PaaS) clouds and supports deploying different services of an application on disparate clouds. The efficiency of the abstraction layer is validated by experimentation on an application that uses the message queue, Binary Large Objects (BLOB), email, and short message service (SMS) services of various clouds via the proposed middleware against the same application using these services via their native code. The experimental results show that adding this middleware mildly affects the latency, but it dramatically reduces the developer's overhead of implementing each service for different clouds to make it portable.


Assuntos
Software
4.
Sensors (Basel) ; 22(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35458972

RESUMO

Lymph node metastasis in breast cancer may be accurately predicted using a DenseNet-169 model. However, the current system for identifying metastases in a lymph node is manual and tedious. A pathologist well-versed with the process of detection and characterization of lymph nodes goes through hours investigating histological slides. Furthermore, because of the massive size of most whole-slide images (WSI), it is wise to divide a slide into batches of small image patches and apply methods independently on each patch. The present work introduces a novel method for the automated diagnosis and detection of metastases from whole slide images using the Fast AI framework and the 1-cycle policy. Additionally, it compares this new approach to previous methods. The proposed model has surpassed other state-of-art methods with more than 97.4% accuracy. In addition, a mobile application is developed for prompt and quick response. It collects user information and models to diagnose metastases present in the early stages of cancer. These results indicate that the suggested model may assist general practitioners in accurately analyzing breast cancer situations, hence preventing future complications and mortality. With digital image processing, histopathologic interpretation and diagnostic accuracy have improved considerably.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Linfonodos/patologia , Metástase Linfática/patologia , Políticas
5.
Sensors (Basel) ; 22(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35591142

RESUMO

As a result of the proliferation of digital and network technologies in all facets of modern society, including the healthcare systems, the widespread adoption of Electronic Healthcare Records (EHRs) has become the norm. At the same time, Blockchain has been widely accepted as a potent solution for addressing security issues in any untrusted, distributed, decentralized application and has thus seen a slew of works on Blockchain-enabled EHRs. However, most such prototypes ignore the performance aspects of proposed designs. In this paper, a prototype for a Blockchain-based EHR has been presented that employs smart contracts with Hyperledger Fabric 2.0, which also provides a unified performance analysis with Hyperledger Caliper 0.4.2. The additional contribution of this paper lies in the use of a multi-hosted testbed for the performance analysis in addition to far more realistic Gossip-based traffic scenario analysis with Tcpdump tools. Moreover, the prototype is tested for performance with superior transaction ordering schemes such as Kafka and RAFT, unlike other literature that mostly uses SOLO for the purpose, which accounts for superior fault tolerance. All of these additional unique features make the performance evaluation presented herein much more realistic and hence adds hugely to the credibility of the results obtained. The proposed framework within the multi-host instances continues to behave more successfully with high throughput, low latency, and low utilization of resources for opening, querying, and transferring transactions into a healthcare Blockchain network. The results obtained in various rounds of evaluation demonstrate the superiority of the proposed framework.


Assuntos
Blockchain , Benchmarking , Atenção à Saúde , Tecnologia
6.
Sensors (Basel) ; 22(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36502150

RESUMO

The wearable healthcare equipment is primarily designed to alert patients of any specific health conditions or to act as a useful tool for treatment or follow-up. With the growth of technologies and connectivity, the security of these devices has become a growing concern. The lack of security awareness amongst novice users and the risk of several intermediary attacks for accessing health information severely endangers the use of IoT-enabled healthcare systems. In this paper, a blockchain-based secure data storage system is proposed along with a user authentication and health status prediction system. Firstly, this work utilizes reversed public-private keys combined Rivest-Shamir-Adleman (RP2-RSA) algorithm for providing security. Secondly, feature selection is completed by employing the correlation factor-induced salp swarm optimization algorithm (CF-SSOA). Finally, health status classification is performed using advanced weight initialization adapted SignReLU activation function-based artificial neural network (ASR-ANN) which classifies the status as normal and abnormal. Meanwhile, the abnormal measures are stored in the corresponding patient blockchain. Here, blockchain technology is used to store medical data securely for further analysis. The proposed model has achieved an accuracy of 95.893% and is validated by comparing it with other baseline techniques. On the security front, the proposed RP2-RSA attains a 96.123% security level.


Assuntos
Blockchain , Humanos , Redes Neurais de Computação , Algoritmos , Tecnologia , Atenção à Saúde , Segurança Computacional
7.
Sensors (Basel) ; 21(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34451013

RESUMO

In machine learning and data science, feature selection is considered as a crucial step of data preprocessing. When we directly apply the raw data for classification or clustering purposes, sometimes we observe that the learning algorithms do not perform well. One possible reason for this is the presence of redundant, noisy, and non-informative features or attributes in the datasets. Hence, feature selection methods are used to identify the subset of relevant features that can maximize the model performance. Moreover, due to reduction in feature dimension, both training time and storage required by the model can be reduced as well. In this paper, we present a tri-stage wrapper-filter-based feature selection framework for the purpose of medical report-based disease detection. In the first stage, an ensemble was formed by four filter methods-Mutual Information, ReliefF, Chi Square, and Xvariance-and then each feature from the union set was assessed by three classification algorithms-support vector machine, naïve Bayes, and k-nearest neighbors-and an average accuracy was calculated. The features with higher accuracy were selected to obtain a preliminary subset of optimal features. In the second stage, Pearson correlation was used to discard highly correlated features. In these two stages, XGBoost classification algorithm was applied to obtain the most contributing features that, in turn, provide the best optimal subset. Then, in the final stage, we fed the obtained feature subset to a meta-heuristic algorithm, called whale optimization algorithm, in order to further reduce the feature set and to achieve higher accuracy. We evaluated the proposed feature selection framework on four publicly available disease datasets taken from the UCI machine learning repository, namely, arrhythmia, leukemia, DLBCL, and prostate cancer. Our obtained results confirm that the proposed method can perform better than many state-of-the-art methods and can detect important features as well. Less features ensure less medical tests for correct diagnosis, thus saving both time and cost.


Assuntos
Algoritmos , Máquina de Vetores de Suporte , Teorema de Bayes , Análise por Conglomerados , Humanos , Aprendizado de Máquina , Masculino
8.
Sensors (Basel) ; 21(16)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34450933

RESUMO

The substantial advancements offered by the edge computing has indicated serious evolutionary improvements for the internet of things (IoT) technology. The rigid design philosophy of the traditional network architecture limits its scope to meet future demands. However, information centric networking (ICN) is envisioned as a promising architecture to bridge the huge gaps and maintain IoT networks, mostly referred as ICN-IoT. The edge-enabled ICN-IoT architecture always demands efficient in-network caching techniques for supporting better user's quality of experience (QoE). In this paper, we propose an enhanced ICN-IoT content caching strategy by enabling artificial intelligence (AI)-based collaborative filtering within the edge cloud to support heterogeneous IoT architecture. This collaborative filtering-based content caching strategy would intelligently cache content on edge nodes for traffic management at cloud databases. The evaluations has been conducted to check the performance of the proposed strategy over various benchmark strategies, such as LCE, LCD, CL4M, and ProbCache. The analytical results demonstrate the better performance of our proposed strategy with average gain of 15% for cache hit ratio, 12% reduction in content retrieval delay, and 28% reduced average hop count in comparison to best considered LCD. We believe that the proposed strategy will contribute an effective solution to the related studies in this domain.

9.
Sensors (Basel) ; 21(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34884099

RESUMO

Diabetes is a fatal disease that currently has no treatment. However, early diagnosis of diabetes aids patients to start timely treatment and thus reduces or eliminates the risk of severe complications. The prevalence of diabetes has been rising rapidly worldwide. Several methods have been introduced to diagnose diabetes at an early stage, however, most of these methods lack interpretability, due to which the diagnostic process cannot be explained. In this paper, fuzzy logic has been employed to develop an interpretable model and to perform an early diagnosis of diabetes. Fuzzy logic has been combined with the cosine amplitude method, and two fuzzy classifiers have been constructed. Afterward, fuzzy rules have been designed based on these classifiers. Lastly, a publicly available diabetes dataset has been used to evaluate the performance of the proposed fuzzy rule-based model. The results show that the proposed model outperforms existing techniques by achieving an accuracy of 96.47%. The proposed model has demonstrated great prediction accuracy, suggesting that it can be utilized in the healthcare sector for the accurate diagnose of diabetes.


Assuntos
Algoritmos , Diabetes Mellitus , Diabetes Mellitus/diagnóstico , Lógica Fuzzy , Humanos
10.
Sensors (Basel) ; 22(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35274628

RESUMO

The paper presents a new security aspect for a Mobile Ad-Hoc Network (MANET)-based IoT model using the concept of artificial intelligence. The Black Hole Attack (BHA) is considered one of the most affecting threats in the MANET in which the attacker node drops the entire data traffic and hence degrades the network performance. Therefore, it necessitates the designing of an algorithm that can protect the network from the BHA node. This article introduces Ad-hoc On-Demand Distance Vector (AODV), a new updated routing protocol that combines the advantages of the Artificial Bee Colony (ABC), Artificial Neural Network (ANN), and Support Vector Machine (SVM) techniques. The combination of the SVM with ANN is the novelty of the proposed model that helps to identify the attackers within the discovered route using the AODV routing mechanism. Here, the model is trained using ANN but the selection of training data is performed using the ABC fitness function followed by SVM. The role of ABC is to provide a better route for data transmission between the source and the destination node. The optimized route, suggested by ABC, is then passed to the SVM model along with the node's properties. Based on those properties ANN decides whether the node is a normal or an attacker node. The simulation analysis performed in MATLAB shows that the proposed work exhibits an improvement in terms of Packet Delivery Ratio (PDR), throughput, and delay. To validate the system efficiency, a comparative analysis is performed against the existing approaches such as Decision Tree and Random Forest that indicate that the utilization of the SVM with ANN is a beneficial step regarding the detection of BHA attackers in the MANET-based IoT networks.


Assuntos
Algoritmos , Inteligência Artificial , Simulação por Computador , Redes Neurais de Computação , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA