Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 238(4): 1733-1744, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36759331

RESUMO

Changes in chromosome numbers, including polyploidy and dysploidy events, play a key role in eukaryote evolution as they could expediate reproductive isolation and have the potential to foster phenotypic diversification. Deciphering the pattern of chromosome-number change within a phylogeny currently relies on probabilistic evolutionary models. All currently available models assume time homogeneity, such that the transition rates are identical throughout the phylogeny. Here, we develop heterogeneous models of chromosome-number evolution that allow multiple transition regimes to operate in distinct parts of the phylogeny. The partition of the phylogeny to distinct transition regimes may be specified by the researcher or, alternatively, identified using a sequential testing approach. Once the number and locations of shifts in the transition pattern are determined, a second search phase identifies regimes with similar transition dynamics, which could indicate on convergent evolution. Using simulations, we study the performance of the developed model to detect shifts in patterns of chromosome-number evolution and demonstrate its applicability by analyzing the evolution of chromosome numbers within the Cyperaceae plant family. The developed model extends the capabilities of probabilistic models of chromosome-number evolution and should be particularly helpful for the analyses of large phylogenies that include multiple distinct subclades.


Assuntos
Cromossomos , Cyperaceae , Filogenia , Cyperaceae/genética , Poliploidia , Plantas/genética , Evolução Molecular
2.
Proc Biol Sci ; 288(1959): 20210533, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34547912

RESUMO

The role of plant-pollinator interactions in the rapid radiation of the angiosperms have long fascinated evolutionary biologists. Studies have brought evidence for pollinator-driven diversification of various plant lineages, particularly plants with specialized flowers and concealed rewards. By contrast, little is known about how this crucial interaction has shaped macroevolutionary patterns of floral visitors. In particular, there is currently no empirical evidence that floral host association has increased diversification in bees, the most prominent group of floral visitors that essentially rely on angiosperm pollen. In this study, we examine how floral host preference influenced diversification in eucerine bees (Apidae, Eucerini), which exhibit large variations in their floral associations. We combine quantitative pollen analyses with a recently proposed phylogenetic hypothesis, and use a state speciation and extinction probabilistic approach. Using this framework, we provide the first evidence that multiple evolutionary transitions from host plants with accessible pollen to restricted pollen from 'bee-flowers' have significantly increased the diversification of a bee clade. We suggest that exploiting host plants with restricted pollen has allowed the exploitation of a new ecological niche for eucerine bees and contributed both to their colonization of vast regions of the world and their rapid diversification.


Assuntos
Flores , Polinização , Animais , Abelhas , Evolução Biológica , Filogenia , Pólen
3.
New Phytol ; 240(3): 918-927, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37337836
4.
Methods Mol Biol ; 2672: 529-547, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37335498

RESUMO

The ChromEvol software was the first to implement a likelihood-based approach, using probabilistic models that depict the pattern of chromosome number change along a specified phylogeny. The initial models have been completed and expanded during the last years. New parameters that model polyploid chromosome evolution have been implemented in ChromEvol v.2. In recent years, new and more complex models have been developed. The BiChrom model is able to implement two distinct chromosome models for the two possible trait states of a binary character of interest. ChromoSSE jointly implements chromosome evolution, speciation, and extinction. In the near future, we will be able to study chromosome evolution with increasingly complex models.


Assuntos
Cromossomos , Evolução Molecular , Humanos , Funções Verossimilhança , Cromossomos/genética , Filogenia , Poliploidia
5.
Nat Plants ; 9(4): 572-587, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36973414

RESUMO

Plant genomes are characterized by large and complex gene families that often result in similar and partially overlapping functions. This genetic redundancy severely hampers current efforts to uncover novel phenotypes, delaying basic genetic research and breeding programmes. Here we describe the development and validation of Multi-Knock, a genome-scale clustered regularly interspaced short palindromic repeat toolbox that overcomes functional redundancy in Arabidopsis by simultaneously targeting multiple gene-family members, thus identifying genetically hidden components. We computationally designed 59,129 optimal single-guide RNAs that each target two to ten genes within a family at once. Furthermore, partitioning the library into ten sublibraries directed towards a different functional group allows flexible and targeted genetic screens. From the 5,635 single-guide RNAs targeting the plant transportome, we generated over 3,500 independent Arabidopsis lines that allowed us to identify and characterize the first known cytokinin tonoplast-localized transporters in plants. With the ability to overcome functional redundancy in plants at the genome-scale level, the developed strategy can be readily deployed by scientists and breeders for basic research and to expedite breeding efforts.


Assuntos
Arabidopsis , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Arabidopsis/genética , Melhoramento Vegetal , Plantas/genética , Genoma de Planta , Sistemas CRISPR-Cas , Plantas Geneticamente Modificadas/genética , Edição de Genes
6.
Evolution ; 74(8): 1620-1639, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32510165

RESUMO

As species richness varies along the tree of life, there is a great interest in identifying factors that affect the rates by which lineages speciate or go extinct. To this end, theoretical biologists have developed a suite of phylogenetic comparative methods that aim to identify where shifts in diversification rates had occurred along a phylogeny and whether they are associated with some traits. Using these methods, numerous studies have predicted that speciation and extinction rates vary across the tree of life. In this study, we show that asymmetric rates of sequence evolution lead to systematic biases in the inferred phylogeny, which in turn lead to erroneous inferences regarding lineage diversification patterns. The results demonstrate that as the asymmetry in sequence evolution rates increases, so does the tendency to select more complicated models that include the possibility of diversification rate shifts. These results thus suggest that any inference regarding shifts in diversification pattern should be treated with great caution, at least until any biases regarding the molecular substitution rate have been ruled out.


Assuntos
Evolução Biológica , Modelos Genéticos , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA