Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 814: 152802, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34982993

RESUMO

Global energy consumption has been increasing in tandem with economic growth, putting pressure on the world's supply of renewable energy sources. Municipal Solid waste (MSW) has been reported contributing immensely to the improvement of a secure environment and renewable sources. Energy scarcity and conventional MSW disposal methods in developing countries lead towards many environmental and economic issues. Scientists have been able to experiment with various waste-to-energy conversion technologies in light of this situation. This communication highlights and reviews WtE technologies to convert MSW and other feedstocks into electricity, hydrogen gas, bioethanol along with other value added products like fertilizer(s), platform chemicals as an environmentally friendly products. This review comprehensively summarized the dynamics, risk assessment, ecological influence, advancements, constraints and perspectives altogether in field of municipal solid waste management and treatment. Stare-of-the-art information on ecological influence and risk assessment in handling and transportation of municipal solid waste has been provided. Advanced trends involved in remediation of emerging pollutants and resources obtained from municipal solid wastes have been uncovered. Lastly, this paper comprises constraints and perspectives for uncovering MSW based circular bioeconomy aspects.


Assuntos
Poluentes Ambientais , Eliminação de Resíduos , Gerenciamento de Resíduos , Medição de Risco , Resíduos Sólidos/análise
2.
Bioresour Technol ; 349: 126835, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35150857

RESUMO

Waste generation is associated with numerous environmental consequences, making it a point of discussion in the environmental arena. Efforts have been made around the world to develop a systematic management approach coupled with a sustainable treatment technology to maximize resource utilization of organic solid waste. Biorefineries and bio-based products play a critical role in lowering total emissions and supporting energy systems. However, economic viability of biorefineries, on the other hand, is a stumbling hurdle to their commercialization. This communication provides a thorough study of the concept of biorefinery in waste management, as well as technological advancements in this field. In addition, the notion of techno-economic assessment, as well as challenges and future prospects have been covered. To find the most technologically and economically viable solution, further techno-economic study to the new context is required. Overall, this communication would assist decision-makers in identifying environmentally appropriate biorefinery solutions ahead of time.


Assuntos
Resíduos Sólidos , Gerenciamento de Resíduos , Biocombustíveis , Tecnologia
3.
Bioresour Technol ; 355: 127247, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35490955

RESUMO

Increasing municipal solid waste (MSW) generation and environmental concerns have sparked global interest in waste valorization through various waste-to-energy (WtE) to generate renewable energy sources and reduce dependency on fossil-derived fuels and chemicals. These technologies are vital for implementing the envisioned global "bioeconomy" through biorefineries. In light of that, a detailed overview of WtE technologies with their benefits and drawbacks is provided in this paper. Additionally, the biorefinery concept for waste management and sustainable energy generation is discussed. The identification of appropriate WtE technology for energy recovery continues to be a significant challenge. So, in order to effectively apply WtE technologies in the burgeoning bioeconomy, this review provides a comprehensive overview of the existing scenario for sustainable MSW management along with the bottlenecks and perspectives.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Combustíveis Fósseis , Fenômenos Físicos , Resíduos Sólidos , Tecnologia
4.
Sci Total Environ ; 792: 148367, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34465041

RESUMO

Following the proven concept, capabilities, and limitations of detecting the RNA of Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2) in wastewater, it is pertinent to understand the utility of wastewater surveillance data on various scale. In the present work, we put forward the first wastewater surveillance-based city zonation for effective COVID-19 pandemic preparedness. A three-month data of Surveillance of Wastewater for Early Epidemic Prediction (SWEEP) was generated for the world heritage city of Ahmedabad, Gujarat, India. In this expedition, 116 wastewater samples were analyzed to detect SARS-CoV-2 RNA, from September 3rd to November 26th, 2020. A total of 111 samples were detected with at least two out of three SARS-CoV-2 genes (N, ORF 1ab, and S). Monthly variation depicted a significant decline in all three gene copies in October compared to September 2020, followed by a sharp increment in November 2020. Correspondingly, the descending order of average effective gene concentration was: November (~10,729 copies/L) > September (~3047 copies/L) > October (~454 copies/L). Monthly variation of SARS-CoV-2 RNA in the wastewater samples may be ascribed to a decline of 20.48% in the total number of active cases in October 2020 and a rise of 1.82% in November 2020. Also, the monthly recovered new cases were found to be 16.61, 20.03, and 15.58% in September, October, and November 2020, respectively. The percentage change in the gene concentration was observed in the lead of 1-2 weeks with respect to the percentage change in the provisional figures of confirmed cases. SWEEP data-based city zonation was matched with the heat map of the overall COVID-19 infected population in Ahmedabad city, and month-wise effective gene concentration variations are shown on the map. The results expound on the potential of WBE surveillance of COVID-19 as a city zonation tool that can be meaningfully interpreted, predicted, and propagated for community preparedness through advanced identification of COVID-19 hotspots within a given city.


Assuntos
COVID-19 , Humanos , Índia/epidemiologia , Pandemias , RNA Viral , SARS-CoV-2 , Águas Residuárias
5.
Chemosphere ; 282: 130954, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34082315

RESUMO

Humanity is struggling against a major problem for a proper management of generated municipal solid waste. The collected waste causes natural issues like uncontrollable emission of greenhouse gases and others. Even though, escalation of waste results in minimizing the areas accessible for disposing the waste. Creating awareness in the society to use organic products like biofuels, biofertilizers and biogas is a need of an hour. Biochemical processes such as composting, vermicomposting, anaerobic digestion, and landfilling play important role in valorizing biomass and solid waste for production of biofuels, biosurfactants and biopolymer. This paper covers the details of biomass and solid waste characteristics and its composition. It is also focused to provide updated information about reutilization of biomass for value creation. Technologies and products obtained through bio-routes are discussed in current review paper together with the integrated system of solid waste management. It also covers challenges, innovations and perspectives in this field.


Assuntos
Compostagem , Eliminação de Resíduos , Gerenciamento de Resíduos , Anaerobiose , Biocombustíveis , Biomassa , Resíduos Sólidos/análise
6.
Sci Total Environ ; 746: 141326, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32768790

RESUMO

We made the first ever successful effort in India to detect the genetic material of SARS-CoV-2 viruses to understand the capability and application of wastewater-based epidemiology (WBE) surveillance in India. Sampling was carried out on 8 and 27 May 2020 at the Old Pirana Waste Water Treatment Plant (WWTP) at Ahmedabad, Gujarat that receives effluent from Civil Hospital treating COVID-19 patients. All three, i.e. ORF1ab, N and S genes of SARS-CoV-2, were found in the influent with no genes detected in effluent collected on 8 and 27 May 2020. Increase in SARS-CoV-2 genetic loading in the wastewater between 8 and 27 May 2020 samples concurred with corresponding increase in the number of active COVID-19 patients in the city. The number of gene copies was comparable to that reported in untreated wastewaters of Australia, China and Turkey and lower than that of the USA, France and Spain. However, temporal changes in SARS-CoV-2 RNA concentrations need to be substantiated further from the perspectives of daily and short-term changes of SARS-CoV-2 in wastewater through long-term monitoring. The study results SARS-CoV-2 will assist concerned authorities and policymakers to formulate and/or upgrade COVID-19 surveillance to have a more explicit picture of the pandemic curve. While infectivity of SARS-CoV-2 through the excreted viral genetic material in the aquatic environment is still being debated, the presence and detection of genes in wastewater systems makes a strong case for the environmental surveillance of the COVID-19 pandemic.


Assuntos
Infecções por Coronavirus , Pandemias , Pneumonia Viral , Síndrome Respiratória Aguda Grave , Águas Residuárias , Austrália , Betacoronavirus , COVID-19 , China , França , Humanos , Índia/epidemiologia , SARS-CoV-2 , Espanha , Turquia
7.
J Hazard Mater Lett ; 1: 100001, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34977840

RESUMO

Increased concern has recently emerged pertaining to the occurrence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in aquatic environment during the current coronavirus disease 2019 (COVID-19) pandemic. While infectious SARS-CoV-2 has yet to be identified in the aquatic environment, the virus potentially enters the wastewater stream from patient excretions and a precautionary approach dictates evaluating transmission pathways to ensure public health and safety. Although enveloped viruses have presumed low persistence in water and are generally susceptible to inactivation by environmental stressors, previously identified enveloped viruses persist in the aqueous environment from days to several weeks. Our analysis suggests that not only the surface water, but also groundwater, represent SARS-CoV-2 control points through possible leaching and infiltrations of effluents from health care facilities, sewage, and drainage water. Most fecally transmitted viruses are highly persistent in the aquatic environment, and therefore, the persistence of SARS-CoV-2 in water is essential to inform its fate in water, wastewater and groundwater and subsequent human exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA