Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Eur Spine J ; 30(8): 2351-2359, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34023965

RESUMO

PURPOSE: This study's objective was to assess biomechanical parameters across fused and contralateral sacroiliac joints (SIJs) and implants during all spinal motions for both sexes. Various SIJ implant devices on the market are used in minimally invasive surgeries. These implants are placed across the joint using different surgical approaches. The biomechanical effects of fusion surgical techniques in males and females have not been studied. METHODS: The validated finite element models of a male, and a female spine-pelvis-femur were unilaterally instrumented across the SIJ using three screws for two SIJ implants, half threaded and fully threaded screws placed laterally and posteriorly to the joint, respectively. RESULTS: Motion and peak stress data at the SIJs showed that the female model exhibited lower stresses and higher reduction in motion at the contralateral SIJ in all motions than the male model predictions with 84% and 71% reductions in motion and stresses across the SIJ. CONCLUSION: Implants exhibited higher stresses in the female model compared to the male model. However, chances of SIJ implant failure in the female patients are still minimal, based on the calculated factor of safety which is still very high. Both lateral and posterior surgical approaches were effective in both sexes; however, the lateral approach may provide a better biomechanical response, especially for females. Moreover, implant design characteristics did not make a difference in the implants' biomechanical performance. SIJ stabilization was primarily provided by the implants which were the farthest from the sacrum rotation center.


Assuntos
Dor Lombar , Articulação Sacroilíaca , Fenômenos Biomecânicos , Feminino , Análise de Elementos Finitos , Humanos , Masculino , Procedimentos Cirúrgicos Minimamente Invasivos , Próteses e Implantes , Articulação Sacroilíaca/cirurgia
2.
Eur Spine J ; 30(9): 2622-2630, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34259908

RESUMO

PURPOSE: Lumbar procedures for Transforaminal Lumbar Interbody Fusion (TLIF) range from open (OS) to minimally invasive surgeries (MIS) to preserve paraspinal musculature. We quantify the biomechanics of cross-sectional area (CSA) reduction of paraspinal muscles following TLIF on the adjacent segments. METHODS: ROM was acquired from a thoracolumbar ribcage finite element (FE) model across each FSU for flexion-extension. A L4-L5 TLIF model was created. The ROM in the TLIF model was used to predict muscle forces via OpenSim. Muscle fiber CSA at L4 and L5 were reduced from 4.8%, 20.7%, and 90% to simulate muscle damage. The predicted muscle forces and ROM were applied to the TLIF model for flexion-extension. Stresses were recorded for each model. RESULTS: Increased ROM was present at the cephalad (L3-L4) and L2-L3 level in the TLIF model compared to the intact model. Graded changes in paraspinal muscles were seen, the largest being in the quadratus lumborum and multifidus. Likewise, intradiscal pressures and annulus stresses at the cephalad level increased with increasing CSA reduction. CONCLUSIONS: CSA reduction during the TLIF procedure can lead to adjacent segment alterations in the spinal element stresses and potential for continued back pain, postoperatively. Therefore, minimally invasive techniques may benefit the patient.


Assuntos
Vértebras Lombares , Fusão Vertebral , Análise de Elementos Finitos , Humanos , Doença Iatrogênica , Vértebras Lombares/cirurgia , Procedimentos Cirúrgicos Minimamente Invasivos/efeitos adversos , Músculos Paraespinais/diagnóstico por imagem , Amplitude de Movimento Articular , Fusão Vertebral/efeitos adversos
3.
J Biomech Eng ; 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31049580

RESUMO

In the normal spine due to its curvature in various regions, C7 plumb line (C7PL) passes through the sacrum so that the head is centered over the pelvis-ball and socket hip joints and ankle joints. This configuration leads to the least muscular activities to maintain the spinal balance. For any reason like deformity, scoliosis, kyphosis, trauma, and/or surgery this optimal configuration gets disturbed requiring higher muscular activity to maintain the posture and balance. Several parameters like the thoracic kyphosis (TK), lumbar lordosis (LL), pelvic incidence (PI), sacral slope (SS), Hip- and leg position influence the sagittal balance and thus the optimal configuration of spinal alignment. Global sagittal imbalance is energy consuming and often painful compensatory mechanisms are developed, that in turn negatively influence the quality of life. This review looks at the clinical aspects of spinal imbalance, and the biomechanics of spinal balance as dictated by the deformities- ankylosing spondylitis, scoliosis and kyphosis; surgical corrections- pedicle subtraction osteotomies and long segment stabilizations and consequent postural complications like the proximal and distal junctional kyphosis. This review suggests several potential research topics as well.

4.
Spine Deform ; 12(4): 953-959, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38578598

RESUMO

PURPOSE: To evaluate proximal junctional biomechanics of a MLSS relative to traditional pedicle screw fixation at the proximal extent of T10-pelvis posterior instrumentation constructs (T10-p PSF). METHODS: A previously validated three-dimensional osseoligamentous spinopelvic finite element (FE) model was used to compare proximal junctional range-of-motion (ROM), vertebral body stresses, and discal biomechanics between two groups: (1) T10-p with a T10-11 MLSS ("T10-11 MLSS") and (2) T10-p with a traditional T10 pedicle screw ("Traditional T10-PS"). RESULTS: The T10-11 MLSS had a 5% decrease in T9 cortical bone stress compared to Traditional T10-PS. Conversely, the T10 and T11 bone stresses increased by 46% and 98%, respectively, with T10-11 MLSS compared to Traditional T10-PS. Annular stresses and intradiscal pressures (IDP) were similar at T9-T10 between constructs. At the T10-11 disc, T10-11 MLSS decreased annular stresses by 29% and IDP by 48% compared to Traditional T10-PS. Adjacent ROM (T8-9 & T9-10) were similar between T10-11 MLSS and Traditional T10-PS. T10-11 MLSS had 39% greater ROM at T10-11 and 23% less ROM at T11-12 compared to Traditional T10-PS. CONCLUSIONS: In this FE analysis, a T10-11 MLSS at the proximal extent of T10-pelvis posterior instrumentation resulted in increased T10 and T11 cortical bone stresses, decreased discal annular stress and IDP and increased ROM at T10-11, and no change in ROM at the adjacent level. Given the complex and multifactorial nature of proximal junctional kyphosis, these results require additional biomechanical and clinical evaluations to determine the clinical utility of MLSS on the proximal junctions of thoracolumbar posterior instrumented fusions.


Assuntos
Análise de Elementos Finitos , Vértebras Lombares , Parafusos Pediculares , Amplitude de Movimento Articular , Fusão Vertebral , Vértebras Torácicas , Humanos , Fenômenos Biomecânicos , Vértebras Torácicas/cirurgia , Vértebras Lombares/cirurgia , Fusão Vertebral/instrumentação , Fusão Vertebral/métodos , Estresse Mecânico , Disco Intervertebral/cirurgia , Parafusos Ósseos
5.
Hip Int ; 32(3): 298-303, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-32865039

RESUMO

BACKGROUND: The use of total hip arthroplasty (THA) femoral stems that transmit force in a favourable manner to the femur may minimise periprosthetic fractures. Finite element analysis (FEA) is a computerised method that analyses the effect of forces applied to a structure with complex shape. Our aim was to apply FEA to compare primary THA cementless stem designs and their association with periprosthetic fracture risk. METHODS: 3-dimensional (3D) models of a Dorr Type A femur and 5 commonly used primary THA cementless stem designs (short single wedge, standard-length single wedge, modular, double-wedge metaphyseal filling, and cylindrical fully coated) were developed using computed tomography (CT) imaging. Implant insertion, single-leg stance, and twisting with a planted foot were simulated. FEA was performed, and maximum femoral strain along the implant-bone interface recorded. RESULTS: Femoral strain was highest with short single-wedge stem design (0.3850) and lowest with standard-length single-wedge design (0.0520). Location of maximum femoral strain varied by stem design, but not with implant insertion, single-leg stance, or twisting with a planted foot. Strain was as high during implant insertion as with single-leg stance or twisting with a planted foot. CONCLUSIONS: Our results suggest the risk of intraoperative and postoperative periprosthetic fracture with THA in a Dorr A femur is highest with short single-wedge stems and lowest with standard-length single-wedge stems. Consideration may be given to minimising the use of short single-wedge stems in THA. Implant-specific sites of highest strain should be carefully inspected for fracture.


Assuntos
Artroplastia de Quadril , Fraturas do Fêmur , Prótese de Quadril , Fraturas Periprotéticas , Artroplastia de Quadril/efeitos adversos , Fraturas do Fêmur/diagnóstico por imagem , Fraturas do Fêmur/etiologia , Fraturas do Fêmur/cirurgia , Fêmur/diagnóstico por imagem , Fêmur/cirurgia , Análise de Elementos Finitos , Humanos , Fraturas Periprotéticas/diagnóstico por imagem , Fraturas Periprotéticas/etiologia , Fraturas Periprotéticas/cirurgia , Desenho de Prótese , Estudos Retrospectivos
6.
World Neurosurg ; 167: e962-e971, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36064117

RESUMO

BACKGROUND: Sagittal balance is an important clinical parameter of the spine for its normal function. Maintenance of the sagittal balance is crucial in the clinical management of spinal problems. METHODS: Three different finite element models with spinal alignments based on Schwab's classification were developed: (1) Balanced/Normal model (sagittal vertical axis [SVA] = 0 mm, lumbar lordosis [LL] = 50°, thoracic kyphosis [TK] = 25°, pelvic incidence [PI] = 45°, pelvic tilt [PT] = 10°, sacral slope [SS] = 35°); (2) Balanced with compensatory mechanisms/Flatback model (SVA = 50 mm, LL = 20°, TK = 20°, PI = 45°, PT = 30°, SS = 15°); and (3) Imbalanced/Hyperkyphotic model (SVA = 150 mm, LL = -5°, TK = 25°, PI = 45°, PT = 40°, SS = 5°). All 3 models were subjected to the follower loads simulating bodyweight/muscular contractions along with the moments to simulate flexion, extension, lateral bending, and axial rotation. The maximum cortical vertebral stress, annular stress, and intradiscal pressure (IDP) were calculated and compared. RESULTS: The results showed that the hyperkyphotic model had higher stresses in the vertebrae (25% higher), the annulus fibrosus (48% higher) and the IDP (8% higher) than the normal models in flexion. The segments near the thoracolumbar junction (T10-L1) showed the highest increase in the vertebral body stress, the annulus fibrosus stress, and the IDP. CONCLUSIONS: This study showed that the imbalance in sagittal alignment might be responsible for disc degeneration and atraumatic vertebral fractures at the thoracolumbar regions, supporting clinical findings.


Assuntos
Doenças Ósseas Metabólicas , Fraturas por Compressão , Degeneração do Disco Intervertebral , Cifose , Lordose , Fraturas da Coluna Vertebral , Humanos , Degeneração do Disco Intervertebral/diagnóstico por imagem , Fraturas por Compressão/diagnóstico por imagem , Análise de Elementos Finitos , Vértebras Lombares/diagnóstico por imagem , Fraturas da Coluna Vertebral/diagnóstico por imagem , Cifose/diagnóstico por imagem , Estudos Retrospectivos
7.
N Am Spine Soc J ; 5: 100045, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35141612

RESUMO

BACKGROUND: Transforaminal full endoscopic lateral recess decompression (TE-LRD) can decompress lateral recess stenosis transforaminally under the endoscopy procedure. However, the biomechanical effects of the TE-LRD compared to the conventional decompression techniques are not reported. The purpose of this study is to compare the biomechanical effects of TE-LRD with conventional decompression techniques using finite element method. METHODS: Three finite element models of lumbar functional spinal unit (FSU) of the L4-L5 levels were created: 1) normal disc 2) moderate grade disc degeneration 3) severe grade disc degeneration. For each of these three models, the following decompression techniques were simulated, 1) 50% TE-LRD, 2) 100% TE-LRD, 3) Unilateral laminectomy, 4) Bilateral laminectomy. The lower endplate of the fifth lumbar vertebra was fixed and 10Nm of moment in flexion/extension, left/right bending and axial rotation was applied to the upper endplate of the fourth lumbar vertebra, under a follower load of 400N. The range of motion, intervertebral disc stress, and facet joint stress were compared. RESULTS: 50% TE-LRD was found to be the most stable decompression technique in all intervertebral disc models. Though the increase in the range of motion of 100% TE-LRD was higher than other decompression techniques in the normal disc model, it was not significantly different from 50% TE-LRD or unilateral laminectomy techniques in the degenerated disc models. The increase in the intervertebral disc stress was lowest for the 50% TE-LRD surgery in all intervertebral disc models. The increase in the facet stresses for 50% TE-LRD was lower than in the conventional decompression techniques for all intervertebral disc models. CONCLUSIONS: 50% TE-LRD was the decompression surgical technique with the least effect on spinal instability. 100% TE-LRD showed to be effective for cases with degenerative discs. 50% TE-LRD may decrease the risk of postoperative intervertebral disc and facet joint degeneration.

8.
Res Vet Sci ; 118: 97-100, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29421491

RESUMO

Cervical spondylomyelopathy (CSM), also known as wobbler syndrome, affects mainly large and giant-breed dogs, causing compression of the cervical spinal cord and/or nerve roots. Structural and dynamic components seem to play a role in the development of CSM; however, pathogenesis is not yet fully understood. Finite element models have been used for years in human medicine to study the dynamic behavior of structures, but it has been mostly overlooked in veterinary studies. To our knowledge, no specific ligamentous spine models have been developed to investigate naturally occurring canine myelopathies and possible surgical treatments. The goal of this study was to develop a finite element model (FEM) of the C2-C7 segment of the ligamentous cervical vertebral column of a neurologically normal Great Dane without imaging changes. The FEM of the intact C2-C7 cervical vertebral column had a total of 188,906 elements (175,715 tetra elements and 12,740 hexa elements). The range of motion (in degrees) for the FEM subjected to a moment of 2Nm was approximately 27.94 in flexion, 25.86 in extension, 24.14 in left lateral bending, 25.27 in right lateral bending, 17.44 in left axial rotation, and 16.72 in right axial rotation. We constructed a ligamentous FEM of the C2-C7 vertebral column of a Great Dane dog, which can serve as a platform to be modified and adapted for studies related to biomechanics of the cervical vertebral column and to further improve studies on osseous-associated cervical spondylomyelopathy.


Assuntos
Vértebras Cervicais/patologia , Análise de Elementos Finitos , Animais , Fenômenos Biomecânicos , Doenças do Cão/patologia , Cães , Pressão , Compressão da Medula Espinal/patologia , Compressão da Medula Espinal/veterinária
9.
Spine (Phila Pa 1976) ; 43(18): E1053-E1060, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29509655

RESUMO

STUDY DESIGN: The comparison of sacroiliac joint (SIJ) angular motions, pelvis ligaments strain, load sharing, and stress distribution across the joint for male and female spine-pelvis-femur models using finite element analysis. OBJECTIVE: To quantify biomechanical parameters at SIJ for all motions for both male and female models. SUMMARY OF BACKGROUND DATA: SIJ has been recognized as a main source of pain in 13% to 30% of patients with low back pain. It is shown that the SIJ rotation and translation in different planes are not exceeding 2° to 3° and 2 mm, respectively. Due to limitation of in vivo and in vitro studies, it is difficult to quantify certain biomechanical parameters such as load-sharing and stress distribution across the joint. Finite element analysis is a useful tool which can be utilized to understand the biomechanics of the SIJ. METHODS: The validated finite element models of a male and a female lumbar spine-pelvis-femur were developed from computer tomography (CT) scans. The models were used to simulate spine physiological motions. The range of motion, ligament strains, load sharing, and stress distribution across the left and right SIJs were compared between male and female models. RESULTS: Motions data at SIJs demonstrated that female model experienced 86% higher mobility in flexion, 264% in extension, 143% in left bending, and 228% in right bending compared with the male model. The stresses and loads on SIJs were higher on the female model compared with the male model. Female model ligaments underwent larger strains compared with the male model ligaments. CONCLUSION: Female SIJ had higher mobility, stresses, loads, and pelvis ligament strains compared with the male SIJ which led to higher stress across the joint, especially on the sacrum under identical loading conditions. This could be a possible reason for higher incidence of SIJ pain and pelvic stress fracture in females. LEVEL OF EVIDENCE: N/A.


Assuntos
Análise de Elementos Finitos , Modelos Anatômicos , Postura/fisiologia , Articulação Sacroilíaca/diagnóstico por imagem , Caracteres Sexuais , Fenômenos Biomecânicos/fisiologia , Feminino , Humanos , Dor Lombar/diagnóstico por imagem , Dor Lombar/fisiopatologia , Vértebras Lombares/anatomia & histologia , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/fisiologia , Masculino , Pessoa de Meia-Idade , Amplitude de Movimento Articular/fisiologia , Articulação Sacroilíaca/anatomia & histologia , Articulação Sacroilíaca/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA