RESUMO
Background and Objective: Helicobacter pylori is a human-stomach-dwelling organism that causes many gastric illnesses, including gastritis, ulcer, and gastric cancer. The purpose of the study was to perform differential proteomic analysis on H. pylori isolates from gastritis, ulcer, and gastric cancer patients. Materials and Methods: H. pylori was isolated from antrum and fundus biopsies obtained from patients who visited the Department of Gastroenterology. Using nano-LC-QTOF MS/MS analysis, differentially regulated proteins were identified through proteome profiling of pooled samples of H. pylori isolated from gastritis, ulcer, and gastric cancer patients. Antigenic scores and cellular localization of proteins were determined using additional prediction tools. Results: A total of 14 significantly regulated proteins were identified in H. pylori isolated from patients with either gastritis, ulcer, or gastric cancer. Comparative analysis of groups revealed that in the case of cancer vs. gastritis, six proteins were overexpressed, out of which two proteins, including hydrogenase maturation factor (hypA) and nucleoside diphosphate kinase (ndk) involved in bacterial colonization, were only upregulated in isolates from cancer patients. Similarly, in cancer vs. ulcer, a total of nine proteins were expressed. Sec-independent protein translocase protein (tatB), involved in protein translocation, and pseudaminic acid synthase I (pseI), involved in the synthesis of functional flagella, were upregulated in cancer, while hypA and ndk were downregulated. In ulcer vs. gastritis, eight proteins were expressed. In this group, tatB was overexpressed. A reduction in thioredoxin peroxidase (bacterioferritin co-migratory protein (bcp)) was observed in ulcer vs. gastritis and cancer vs. ulcer. Conclusion: Our study suggested three discrete protein signatures, hypA, tatB, and bcp, with differential expression in gastritis, ulcer, and cancer. Protein expression profiles of H. pylori isolated from patients with these gastric diseases will help to understand the virulence and pathogenesis of H. pylori.
Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Hidrogenase , Núcleosídeo-Difosfato Quinase , Neoplasias Gástricas , Gastrite/microbiologia , Glicogênio Sintase/metabolismo , Infecções por Helicobacter/microbiologia , Humanos , Hidrogenase/metabolismo , Núcleosídeo-Difosfato Quinase/metabolismo , Paquistão , Peroxirredoxinas/metabolismo , Proteoma/metabolismo , Proteômica , Neoplasias Gástricas/patologia , Espectrometria de Massas em Tandem , ÚlceraRESUMO
Demand for freshwater increases day by day as impurity increases due to the industrial, domestic and municipal waste in the water. Inappropriate disposal of coal fly ash (CFA) is not eco-friendly, therefore the need is to convert it into some beneficial material like zeolite. Zeolite-based composites with metal oxides show high cation interchange capacity, fast adsorption, and high efficiency for the removal of wastewater pollutants. In this research work, metal oxide along with zeolite (derived for CFA) was prepared. Metal oxide (WO3) and magnetite (Fe3O4) based zeolite composite was used adsorption enhanced photocatalytic degradation of rhodamine B dye. Ternary composite (zeolite/WO3/Fe3O4) was characterized using a scanning electron microscope, x-ray diffraction, Fourier transform infrared spectroscopy. The bandgap energy of composite was estimated using Tauc plot method from the data obtained after UV-visible spectroscopy. The behavior of composite under acidic and basic conditions was analyzed using pHpzcof the composite. Influencing parameters like pH, dye concentration, contact time, and catalyst dosage was optimized under ultraviolet irradiations (254 nm). The results show that maximum degradation was achieved with zeolite/WO3/Fe3O4composite under optimized conditions of pH = 7, catalyst dosage = 10 mg/100 ml, RhB concentration 10 ppm, and time 60 min. The first-order kinetic model was best fitted to the experimental data. RSM was used as a statistical tool to analyze the data.
RESUMO
PURPOSE: Pancreatic ß-cells protection is integral to insulin secretion in diabetic conditions. In this context, we investigated cinnamic acid in combination with nicotinamide on the regulation of insulin secretion and apoptosis in pancreatic ß-cells using streptozotocin (STZ)-induced apoptotic model in vivo. METHODS: The pancreata of nicotinamide (NA)-cinnamic acid (CA) treated rats were studied using histopathological, immunofluorescence, molecular docking, and RT-PCR analyses, supported by serum glucose and insulin levels. RESULTS: The biochemical data revealed that the acute treatment of NA and CA in combination significantly increased serum insulin, thereby lowering blood glucose level in vivo. From histological findings, NA-CA pre-treatment displayed significant protection against STZ-apoptotic trends, improved insulin secretion, and recapitulated the STZ-induced morphology to normal control. The upregulated expressions of caspases, caused by STZ-treatments, were significantly downregulated with NA-CA in immunofluorescent detection and their translational levels, respectively. We found dense ERK½-insulin staining and p-ERK½ expression, which was further supported by strong ERK½ residues-ligands interactions based on in silico analysis. CONCLUSION: From the pre-clinical data, we thus conclude that NA-CA cocktail exerts dual insulin releasing and survival effects in pancreatic ß-cells by targeting ERK½ pathway.