Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 448: 130991, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36860085

RESUMO

The Cd toxicity causes severe perturbations to the plant's growth and development. Here, polyploid and diploid rice lines were treated with zinc-oxide nanoparticles (ZnO-NPs) and Cd, and physiological, cytological and molecular changes were observed. The Cd toxicity significantly reduced plant's growth attributes (such as shoot length, biological yield, dry matter, and chlorophyll contents, which decreased by 19%, 18%, 16%, 19% in polyploid and 35%, 43%, 45% and 43% in diploid rice, respectively), and disturbed the sugar level through the production of electrolytes, hydrogen peroxide, and malondialdehyde. The application of ZnO-NPs significantly alleviated the Cd toxicity in both lines by improving the antioxidant enzymes activities and physiochemical attributes. Semi-thin sections and transmission electron microscope revealed more and different types of abnormalities in diploid rice compared to polyploid rice under Cd stress. Moreover, RNA-seq analysis identified several differentially expressed genes between polyploid and diploid rice, especially metal and sucrose transporter genes. The GO, COG, and KEGG analyses revealed ploidy-specific pathways associated with plant growth and development. In conclusion, ZnO-NPs application to both rice lines significantly improved plant growth and decreased Cd accumulation in plants. We inferred that polyploid rice is more resistant to Cd stress than diploid rice.


Assuntos
Oryza , Óxido de Zinco , Cádmio , Sacarose , Poliploidia , Estresse Oxidativo
2.
J Hazard Mater ; 458: 132019, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37437486

RESUMO

Genome doubling in plants induces physiological and molecular changes to withstand environmental stress. Diploid rice (D-2x) and its tetraploid (T-4x) plants were treated with 25 µM Arsenic (As) and 15 mg L-1 TiO2 nanoparticles (NPs), and results indicated decreased growth and photosynthetic activity with high accumulation of reactive oxygen species (ROS) due to the As-toxicity in rice lines, significantly in D-2x rice plants. The treatment of As-contaminated rice with TiO2 NPs resulted in increased root length (8.17%) and chlorophyll AB (13.28%) and decreased electrolyte leakage (21.76%) and H2O2 (17.65%) contents than its counterpart diploid rice. Moreover, TiO2 NPs improved the activity of peroxidase, catalase, glutathione, and superoxide dismutase and reduced lipid peroxidation due to lower ROS production in D-2x and T-4x under As toxicity. Transcriptome analysis revealed abrupt changes in the expression levels of key signaling heat shock proteins, tubulin, aquaporins, As, and metal transporters under As toxicity in T-4x and D-2x lines. The KEGG and GO studies highlighted the striking distinctions between rice lines under As-stress in glutathione metabolism, H2O2 catabolic process, MAPK signaling pathway, and carotenoid biosynthesis terms, revealing consistency between physiological and molecular results. Root cells from D-2x rice were significantly more distorted by As poisoning than those from 4x rice, and cell organelles, such as mitochondria and endoplasmic reticulum, were changed or deformed. These findings proved the superiority of tetraploid rice lines over their diploid counterpart in coping with As-stress.


Assuntos
Arsênio , Nanopartículas , Oryza , Antioxidantes/metabolismo , Tetraploidia , Espécies Reativas de Oxigênio/metabolismo , Oryza/metabolismo , Arsênio/toxicidade , Arsênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Glutationa/metabolismo , Nanopartículas/toxicidade , Análise de Sequência de RNA , Estresse Oxidativo
3.
Front Plant Sci ; 13: 876119, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35599879

RESUMO

The continuous increase in the heavy metals concentration in the soil due to anthropogenic activities has become a global issue. The chromium, especially hexavalent chromium, is highly toxic for living organisms due to high mobility, solubility, and carcinogenic properties. Considering the beneficial role of nanoparticles and bacteria in alleviating the metal stress in plants, a study was carried out to evaluate the role of cerium dioxide (CeO2) nanoparticles (NPs) and Staphylococcus aureus in alleviating the chromium toxicity in sunflower plants. Sunflower plants grown in chromium (Cr) contaminated soil (0, 25, and 50 mg kg-1) were treated with CeO2 nanoparticles (0, 25, and 50 mg L-1) and S. aureus. The application of Cerium Dioxide Nanoparticles (CeO2 NPs) significantly improved plant growth and biomass production, reduced oxidative stress, and enhanced the enzymatic activities in the sunflower plant grown under chromium stress. The application of S. aureus further enhanced the beneficial role of nanoparticles in alleviating metal-induced toxicity. The maximum improvement was noted in plants treated with both nanoparticles and S. aureus. The augmented application of CeO2 NPs (50 mg l-1) at Cr 50 mg kg-1 increased the chl a contents from 1.2 to 2.0, chl b contents 0.5 to 0.8 and mg g-1 FW, and decreased the leakage of the electrolyte from 121 to 104%. The findings proved that the application of CeO2 nanoparticles and S. aureus could significantly ameliorate the metal-induced stress in sunflower plants. The findings from this study can provide new horizons for research in the application of nanoparticles in phytoremediation and bioremediation.

4.
Chemosphere ; 296: 134065, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35202665

RESUMO

Chromium is one of the highly toxic heavy metals to plant growth and development especially hexavalent chromium (Cr+6) due to its readily available nature and mobility into the environment. The chelating agents and hyperaccumulator plant can contribute to remediating the heavy metals from the contaminated medium. This study was conducted to analyze the role of citric acid and chromium resistant bacteria in castor bean to remediate Cr+6 from the polluted soil. The soil was spiked with different levels of citric acid (0, 2.5, 5 mM) and chromium (0, 10, 20 mg kg-1). The ripened plants were harvested and analyzed for growth parameters, chlorophyll contents, gas exchange parameters, oxidative stress markers, antioxidant enzymes activities and chromium accumulation in different parts of plants. The high concentration of chromium 20 mg kg-1 drastically reduced the plant growth, decreased photosynthetic rate and increased oxidative stress. The application of CA improved the plant growth even at the highest concentration of chromium which was further boosted by the combined application of CA and chromium resistant bacteria. However, the performance of staphylococcus aureus was found significantly better than Bacillus subtilis due to its better ability to tolerate chromium toxicity even at high concentrations. The findings proved that castor bean has excellent potential to tolerate high chromium concentrations and can be effectively used to remediate metals contaminated soil. Further, CA and metal resistant bacteria can significantly enhance the phytoremediation potential of castor bean and other hyperaccumulator plants. The bacteria assisted phytoremediation coupled with the chelating agent can be a practical approach to remediate the metals contaminating soils.


Assuntos
Metais Pesados , Ricinus communis , Poluentes do Solo , Biodegradação Ambiental , Quelantes , Cromo/toxicidade , Ácido Cítrico/farmacologia , Metais Pesados/análise , Ricinus , Solo , Poluentes do Solo/análise
5.
Front Plant Sci ; 13: 973782, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072329

RESUMO

Salinity has become a major environmental concern of agricultural lands, impairing crop production. The current study aimed to examine the role of zinc oxide nanoparticles (ZnO NPs) in reducing the oxidative stress induced by salinity and the overall improvement in phytochemical properties in barley. A total of nine different barley genotypes were first subjected to salt (NaCl) stress in hydroponic conditions to determine the tolerance among the genotypes. The genotype Annora was found as most sensitive, and the most tolerant genotype was Awaran 02 under salinity stress. In another study, the most sensitive (Annora) and tolerant (Awaran 02) barley genotypes were grown in pots under salinity stress (100 mM). At the same time, half of the pots were provided with the soil application of ZnO NPs (100 mg kg-1), and the other half pots were foliar sprayed with ZnO NPs (100 mg L-1). Salinity stress reduced barley growth in both genotypes compared to control plants. However, greater reduction in barley growth was found in Annora (sensitive genotype) than in Awaran 02 (tolerant genotype). The exogenous application of ZnO NPs ameliorated salt stress and improved barley biomass, photosynthesis, and antioxidant enzyme activities by reducing oxidative damage caused by salt stress. However, this positive effect by ZnO NPs was observed more in Awaran 02 than in Annora genotype. Furthermore, the foliar application of ZnO NPs was more effective than the soil application of ZnO NPs. Findings of the present study revealed that exogenous application of ZnO NPs could be a promising approach to alleviate salt stress in barley genotypes with different levels of salinity tolerance.

6.
Chemosphere ; 243: 125353, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31765899

RESUMO

Here we compared the performance of four macrophytes namely Brachia mutica, Typha domingensis, Phragmites australis and Leptochala fusca, in bacterially assisted floating treatment wetlands (FTWs) for the clean-up of five trace metals (Fe, Mn, Ni, Pb, and Cr) from polluted river water. The river water was artificially spiked with reagent grade chemicals to increase the trace metal pollution. The macrophytes were planted in a polystyrene sheet to prepare FTWs, which were placed over the metal-contaminated river water. The consortium of five rhizospheric and endophytic bacterial strains, i.e., Aeromonas salmonicida, Pseudomonas indoloxydans, Bacillus cerus, Pseudomonas gessardii, and Rhodococcus sp., was inoculated support the natural remediation ability. We found a significant reduction in the metal content by all four macrophytes and the removal was significantly enhanced when bacterial inoculum was applied. The maximum removal was observed in FTWs planted with P. australis and inoculated with bacteria. In this treatment (T6) the Fe, Mn, Ni, Pb and Cr contents were reduced to 0.53, 0.20, 0.09, 1.04 and 0.07 mg L-1 after five weeks retention time. The bacterial inoculation sufficiently increased the plant biomass. All macrophytes depicted potential to uptake and translocate trace metals in the roots instead of shoots. The bacterial inoculation acclimatize the plants roots followed by shoots and enhanced the uptake of metals by macrophytes. This study emphasized the usefulness of macrophytes-bacteria mutualism in FTWs system for the remediation of trace metals. The similar systems may provide practical solutions for the remediation of trace metals of polluted river water.


Assuntos
Biodegradação Ambiental , Metais Pesados/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Áreas Alagadas , Bactérias , Biomassa , Chumbo , Poaceae/microbiologia , Rios , Oligoelementos/análise , Typhaceae , Poluição da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA