Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 351: 119650, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042086

RESUMO

Negative environmental impacts of nitrogen (N) intensive diets have triggered global debates on sustainable nitrogen management. Solutions such as dietary transitions, cropland reallocation and N Regulatory Policy (NRP) have been proposed to mitigate the adverse environmental impacts of N use in food production. However, there is still insufficient understanding of how NRPs could be designed to minimize negative environmental impact across diverse agro-ecological zones without sacrificing human dietary requirements. To increase this understanding, we evaluated the consequences of three NRP scenarios (low, moderate, and high N fertilizer rates) on the amount of livestock and non-livestock diet components as well as the associated N leaching and farmers' Gross Margin (GM) by optimizing the allocation of cropland between food and feed crops. We developed a bio-economic Interval Fuzzy Multi-Objective Programming (bio-economic IFMOP) model for the Zayandeh-Rud river basin, Iran, and a procedure that accounts for annual average availability of calories per capita, calorie sources from livestock and non-livestock components of three dietary preferences, and inequality in calorie distribution. The interaction among soil, climate and weather variability and NRPs across nine sub-regions of the case study region was handled by crop yield simulation using the DSSAT software. The solution of farmers' GM, derived from the optimization problem across possibilities of water fluctuations, was assessed to determine the uncertainty in GM. We also introduced an N leaching per Block of Distributed Calories (BDC) criterion based on solutions of supplied calories and associated N leaching. The upper bound of the moderate NRP scenario resulted in the smallest N leaching per BDC. This corresponded to ∼0.34, ∼0.34, ∼3.77 and 19.00 million BDC of meat, dairy, wheat and potato, respectively. Also, the upper bound of this scenario satisfied the lowest instability in farmers' GM against water fluctuation compared with low and high NRP scenarios. The affordable volume of N leaching per BDC varied across sub-regions between [1.53,3.49], [1.52,3.33], [0.76,0.99] and [0.05,0.08] kg for meat, dairy, wheat and potato, respectively. Our results highlighted both optimistic and pessimistic prospects of producing low N leaching diets. The approach of this study could also be applied to other regions and countries.


Assuntos
Agricultura , Fertilizantes , Humanos , Agricultura/métodos , Fertilizantes/análise , Nitrogênio/análise , Rios , Irã (Geográfico) , Solo , Dieta , Água
2.
Artigo em Inglês | MEDLINE | ID: mdl-32708323

RESUMO

Agriculture has been identified as one of the most vulnerable sectors affected by climate change. In the present study, we investigate the impact of climatic change on dryland wheat yield in the northwest of Iran for the future time horizon of 2041-2070. The Just and Pope production function is applied to assess the impact of climate change on dryland wheat yield and yield risk for the period of 1991-2016. The Statistical Downscaling Model (SDSM) is used to generate climate parameters from General Circulation Model (GCM) outputs. The results show that minimum temperature is negatively related to average yield in the linear model while the relationship is positive in the non-linear model. An increase in precipitation increases the mean yield in either model. The maximum temperature has a positive effect on the mean yield in the linear model, while this impact is negative in the non-linear model. Drought has an adverse impact on yield levels in both models. The results also indicate that maximum temperature, precipitation, and drought are positively related to yield variability, but minimum temperature is negatively associated with yield variability. The findings also reveal that yield variability is expected to increase in response to future climate scenarios. Given these impacts of temperature on rain-fed wheat crop and its increasing vulnerability to climatic change, policy-makers should support research into and development of wheat varieties that are resistant to temperature variations.


Assuntos
Agricultura/estatística & dados numéricos , Mudança Climática , Produtos Agrícolas/crescimento & desenvolvimento , Secas , Temperatura , Triticum/crescimento & desenvolvimento , Humanos , Irã (Geográfico)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA