Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 266(Pt 2): 131393, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582476

RESUMO

Biocomposites developed using natural fibers serve as a sustainable alternative to synthetic composite materials. However, narrowing the performance gap between synthetic composites and biocomposites requires serious efforts. A promising approach is the modification of natural fibers using various chemical treatments. This paper investigates the potential of tannic acid (TA) treatment as a sustainable approach to enhance mechanical performance and reduce moisture absorption of flax fabric-reinforced biocomposites. The methodology involves the treatment of flax woven fabric with tannic acid, a naturally occurring polyphenolic compound, followed by the fabrication of biocomposite using a green epoxy matrix. The variables studied during treatment are TA concentration and processing time. Characterization of untreated and treated flax fabric and its composites was done using various analytical techniques such as FTIR spectroscopy, moisture absorption and mechanical testing (tensile strength, flexural strength, and impact resistance). FTIR spectroscopy of TA-treated flax confirmed attachment of aromatic rings and carbon double bond formation, thus serving for properties enhancement. The mechanical characterization of composites showed that properties are enhanced up to an optimum limit of concentration and processing time i.e., 1 % concentration and 30 min of processing. Moisture absorption of the TA-treated composite also reduced significantly as compared to untreated composites. These findings contribute towards the advancement in sustainable biocomposites and pave the way for their utilization in various applications.


Assuntos
Linho , Polifenóis , Taninos , Resistência à Tração , Têxteis , Taninos/química , Linho/química , Espectroscopia de Infravermelho com Transformada de Fourier , Fenômenos Mecânicos , Materiais Biocompatíveis/química
2.
Polymers (Basel) ; 15(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36679316

RESUMO

In aerospace and automotive applications, composite materials are used as a major structural material along with metals. Composite-metal and metal-metal joining are very crucial in such structures. Adhesive bonding is commonly used for this purpose. Since such structures are exposed to varying temperatures and dynamic loads, it is essential to investigate the response of such joints under thermomechanical loading. Though various studies have been reported in the literature to assess the thermomechanical properties of composites, adhesives, and their joints, the effect of the surface treatment of metals and composites on the improvement in the thermomechanical behavior of the joints has not been reported. The metal and composite surfaces were modified using chemical etching techniques. The interaction between adhesives and adherends was studied using the DTMA technique in compression mode. Anodizing treatment on aluminum alloys improved the stiffness properties of metallic joints to 36% and decreased the damping to 23%, while chemical treatment on composite and metal adherends increased the stiffness of composite-metal joints to 34% and reduced the energy dissipation to 20%.

3.
Polymers (Basel) ; 15(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37688139

RESUMO

This study investigates the influence of silane-treated aluminum hydroxide on the mechanical performance of flame-retardant composites. These composites have potential applications for luggage bags, as a replacement for conventional plastics, offering more durability and lighter weight. Glass fabric was used as the reinforcement, while epoxy was used as the matrix material. To impart flame retardancy, aluminum hydroxide nanoparticles were used as fillers in different weight % age (5%, 10% and 15%). As these are inorganic particles and have compatibility issues with the matrix material, silane-coupling agents (Dynasylan® 6490 and Dynasylan Glymo) were used to treat these filler particles. Both the silane-coupling agents fraction used for treatment and the fillers fraction added to the composites were varied to determine the most optimum combination. The mechanical properties of the developed composites such as tensile, flexural, and short beam shear strength were investigated. The best results were exhibited by 10% aluminum hydroxide fillers treated with 1% (by weight) coupling agent (Dynasylan Glymo).

4.
Heliyon ; 9(9): e20007, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809450

RESUMO

Dual-core yarns, containing two filaments within the core of the yarn, have gained increasing commercial and research interest recently, especially in denim manufacturing. The use of multi-components in dual-core yarns allows for tailoring the properties of the yarn and denim fabric. The type of filaments and fibers and their surface characteristics play a role in fiber-to-fiber cohesion within yarn structure. However, little has been reported regarding the effect of different filaments on the properties of dual-core yarns. The objective of this study was to investigate the effect of three different filaments, T400, polyester flat (PET flat) and polyester textured (PET textured) as well as two yarn structures, siro versus non-siro, on tensile, elastic and other properties of dual-core yarns at same twist level and linear density of the yarn. The results showed that the siro spun dual-core yarn containing T400 exhibited 25% higher tenacity compared with yarns containing other filaments. However, the plastic deformation of the yarn containing PET flat filament, having a higher initial modulus, was at a relatively lower level compared with T400 and PET textured. Overall, the siro yarn structure showed lower imperfections and higher tenacity compared with the non-siro yarn structure. The dual-core yarn containing T400 showed a higher level of moisture wicking compared with other filaments which can add to the comfort properties but a similar hairiness level. The findings of this study suggest that the use of a filament with a higher initial modulus can improve the stretch and recovery behavior of the dual-core yarns.

5.
Polymers (Basel) ; 14(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36145875

RESUMO

"Fibre-Reinforced Polymer Composites: Mechanical Properties and Applications" is a newly open Special Issue of Polymers, which aims to publish original and review papers on new scientific and applied research and make boundless contributions to the finding and understanding of the reinforcing effects of various synthetic and natural fibres on the performance of biopolymer composites [...].

6.
Nanomaterials (Basel) ; 11(11)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34835861

RESUMO

In this study, we developed multifunctional and durable textile sensors. The fabrics were coated with metal in two steps. At first, pretreatment of fabric was performed, and then copper and silver particles were coated by the chemical reduction method. Hence, the absorbance/adherence of metal was confirmed by the deposition of particles on microfibers. The particles filled the micro spaces between the fibers and made the continuous network to facilitate the electrical conduction. Secondly, further electroplating of the metal was performed to make the compact layer on the particle- coated fabric. The fabrics were analyzed against electrical resistivity and electromagnetic shielding over the frequency range of 200 MHz to 1500 MHz. The presence of metal coating was confirmed from the surface microstructure of coated fabric samples examined by scanning electron microscopy, EDS, and XRD tests. For optimized plating parameters, the minimum surface resistivity of 67 Ω, EMI shielding of 66 dB and Ohmic heating of 118 °C at 10 V was observed. It was found that EMI SH was increased with an increase in the deposition rate of the metal. Furthermore, towards the end, the durability of conductive textiles was observed against severe washing. It was observed that even after severe washing there was an insignificant increase in electrical resistivity and good retention of the metal coating, as was also proven with SEM images.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA