Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuron ; 55(4): 615-32, 2007 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-17698014

RESUMO

Voltage-gated calcium channels (VGCCs) convert electrical activity into calcium (Ca2+) signals that regulate cellular excitability, differentiation, and connectivity. The magnitude and kinetics of Ca2+ signals depend on the number of VGCCs at the plasma membrane, but little is known about the regulation of VGCC surface expression. We report that electrical activity causes internalization of the L-type Ca2+ channel (LTC) CaV1.2 and that this is mediated by binding to the tumor suppressor eIF3e/Int6 (eukaryotic initiation factor 3 subunit e). Using total internal reflection microscopy, we identify a population of CaV1.2 containing endosomes whose rapid trafficking is strongly regulated by Ca2+. We define a domain in the II-III loop of CaV1.2 that binds eIF3e and is essential for the activity dependence of both channel internalization and endosomal trafficking. These findings provide a mechanism for activity-dependent internalization and trafficking of CaV1.2 and provide a tantalizing link between Ca2+ homeostasis and a mammalian oncogene.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Cálcio/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo N/genética , Células Cultivadas , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Dinamina I/genética , Dinamina I/metabolismo , Estimulação Elétrica/métodos , Embrião de Mamíferos , Hipocampo/citologia , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neurônios/efeitos da radiação , Cloreto de Potássio/farmacologia , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley , Transfecção/métodos , ômega-Conotoxina GVIA/farmacologia
2.
Analyst ; 136(6): 1090-102, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21279202

RESUMO

Biosensor technologies that have been primarily used in the past for characterizing biomolecular interactions are now being used to develop new approaches for performing cell-based assays. Biosensors monitor cell attachment to a transducer surface, and thus provide information that is fundamentally different from that provided by microscopy, as the sensor is capable of monitoring temporal evolution of integrin-surface interactions that are difficult to measure by other means. Label-free biosensor technologies are especially advantageous for monitoring the behavior of cells because they do not require stains that typically result in cell death, and are not subject to effects such as photobleaching. As a result, cells can be quantitatively monitored in their culture environment over an extended period of time while processes such as proliferation, apoptosis, cytotoxicity, chemotaxis, ion channel activation, and membrane-bound protein activation are modulated by the introduction of a variety of chemical or biological stimuli. This review describes the application of photonic crystal optical biosensor microplates to a variety of cell-based assays. Detection instruments for photonic crystals measure the aggregate behavior of large cell populations, or, using recently developed biosensor imaging detection, independent monitoring of individual cells. These technological developments offer the ability to perform assays with a limited number of available cells for applications such as high throughput screening with primary cells or stem cells.


Assuntos
Técnicas Biossensoriais/métodos , Células/metabolismo , Técnicas Citológicas , Óptica e Fotônica/métodos , Técnicas Biossensoriais/instrumentação , Óptica e Fotônica/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Neuron ; 46(2): 205-17, 2005 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-15848800

RESUMO

Ephrin signaling through Eph receptor tyrosine kinases can promote attraction or repulsion of axonal growth cones during development. However, the mechanisms that determine whether Eph signaling promotes attraction or repulsion are not known. We show here that the Rho family GEF Vav2 plays a key role in this process. We find that, during axon guidance, ephrin binding to Ephs triggers Vav-dependent endocytosis of the ligand-receptor complex, thus converting an initially adhesive interaction into a repulsive event. In the absence of Vav proteins, ephrin-Eph endocytosis is blocked, leading to defects in growth cone collapse in vitro and significant defects in the ipsilateral retinogeniculate projections in vivo. These findings suggest an important role for Vav family GEFs as regulators of ligand-receptor endocytosis and determinants of repulsive signaling during axon guidance.


Assuntos
Endocitose/fisiologia , Cones de Crescimento/metabolismo , Receptores da Família Eph/metabolismo , Transdução de Sinais/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Efrinas/metabolismo , Camundongos , Camundongos Knockout , Microscopia Confocal , Técnicas do Sistema de Duplo-Híbrido
4.
Neuron ; 46(2): 191-204, 2005 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-15848799

RESUMO

Ephs regulate growth cone repulsion, a process controlled by the actin cytoskeleton. The guanine nucleotide exchange factor (GEF) ephexin1 interacts with EphA4 and has been suggested to mediate the effect of EphA on the activity of Rho GTPases, key regulators of the cytoskeleton and axon guidance. Using cultured ephexin1-/- mouse neurons and RNA interference in the chick, we report that ephexin1 is required for normal axon outgrowth and ephrin-dependent axon repulsion. Ephexin1 becomes tyrosine phosphorylated in response to EphA signaling in neurons, and this phosphorylation event is required for growth cone collapse. Tyrosine phosphorylation of ephexin1 enhances ephexin1's GEF activity toward RhoA while not altering its activity toward Rac1 or Cdc42, thus changing the balance of GTPase activities. These findings reveal that ephexin1 plays a role in axon guidance and is regulated by a switch mechanism that is specifically tailored to control Eph-mediated growth cone collapse.


Assuntos
Cones de Crescimento/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Receptor EphA1/metabolismo , Tirosina/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Células Cultivadas , Embrião de Galinha , Citoesqueleto/metabolismo , Imuno-Histoquímica , Camundongos , Fosforilação , Homologia de Sequência de Aminoácidos , Proteínas rho de Ligação ao GTP/metabolismo
5.
Acc Chem Res ; 41(1): 130-8, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18193823

RESUMO

Aptamers are non-naturally occurring structured oligonucleotides that may bind to small molecules, peptides, and proteins. Typically, aptamers are generated by an in vitro selection process referred to as SELEX (systematic evolution of ligands by exponential enrichment). Aptamers that bind with high affinity and specificity to proteins that reside on the cell surface have potential utility as therapeutic antagonists, agonists, and diagnostic agents. When the target protein requires the presence of the cell membrane (e.g., G-protein-coupled receptors, ion channels) or a co-receptor to fold properly, it is difficult or impossible to program the SELEX experiment with purified, soluble protein target. Recent advances in which the useful range of SELEX has been extended from comparatively simple purified forms of soluble proteins to complex mixtures of proteins in membrane preparations or in situ on the surfaces of living cells offer the potential to discover aptamers against previously intractable targets. Additionally, in cases in which a cell-type specific diagnostic is sought, the most desirable target on the cell surface may not be known. Successful application of aptamer selection techniques to complex protein mixtures can be performed even in the absence of detailed target knowledge and characterization. This Account presents a review of recent work in which membrane preparations or whole cells have been utilized to generate aptamers to cell surface targets. SELEX experiments utilizing a range of target "scaffolds" are described, including cell fragments, parasites and bacteria, viruses, and a variety of human cell types including adult mesenchymal stem cells and tumor lines. Complex target SELEX can enable isolation of potent and selective aptamers directed against a variety of cell-surface proteins, including receptors and markers of cellular differentiation, as well as determinants of disease in pathogenic organisms, and as such should have wide therapeutic and diagnostic utility.


Assuntos
Aptâmeros de Nucleotídeos/uso terapêutico , Desenho de Fármacos , Proteínas de Membrana/antagonistas & inibidores , Técnica de Seleção de Aptâmeros/métodos , Animais , Aptâmeros de Nucleotídeos/química , Humanos , Proteínas de Membrana/química
6.
J Vis Exp ; (84): e51307, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24562095

RESUMO

Ion channels control the electrical properties of neurons and other excitable cell types by selectively allowing ions to flow through the plasma membrane(1). To regulate neuronal excitability, the biophysical properties of ion channels are modified by signaling proteins and molecules, which often bind to the channels themselves to form a heteromeric channel complex(2,3). Traditional assays examining the interaction between channels and regulatory proteins require exogenous labels that can potentially alter the protein's behavior and decrease the physiological relevance of the target, while providing little information on the time course of interactions in living cells. Optical biosensors, such as the X-BODY Biosciences BIND Scanner system, use a novel label-free technology, resonance wavelength grating (RWG) optical biosensors, to detect changes in resonant reflected light near the biosensor. This assay allows the detection of the relative change in mass within the bottom portion of living cells adherent to the biosensor surface resulting from ligand induced changes in cell adhesion and spreading, toxicity, proliferation, and changes in protein-protein interactions near the plasma membrane. RWG optical biosensors have been used to detect changes in mass near the plasma membrane of cells following activation of G protein-coupled receptors (GPCRs), receptor tyrosine kinases, and other cell surface receptors. Ligand-induced changes in ion channel-protein interactions can also be studied using this assay. In this paper, we will describe the experimental procedure used to detect the modulation of Slack-B sodium-activated potassium (KNa) channels by GPCRs.


Assuntos
Técnicas Biossensoriais/métodos , Canais de Potássio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células HEK293 , Humanos , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Óptica e Fotônica/métodos , Canais de Potássio/análise , Canais de Potássio Ativados por Sódio , Receptores Acoplados a Proteínas G/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA