Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Biochem Genet ; 61(1): 69-86, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35727487

RESUMO

Single-Nucleotide Polymorphisms (SNPs) are common genetic variations implicated in human diseases. The non-synonymous SNPs (nsSNPs) affect the proteins' structures and their molecular interactions with other interacting proteins during the accomplishment of biochemical processes. This ultimately causes proteins functional perturbation and disease phenotypes. The Insulin receptor substrate-2 (IRS-2) protein promotes glucose absorption and participates in the biological regulation of glucose metabolism and energy production. Several IRS-2 SNPs are reported in association with type 2 diabetes and obesity in human populations. However, there are no comprehensive reports about the protein structural consequences of these nsSNPs. Keeping in view the pathophysiological consequences of the IRS-2 nsSNPs, we designed the current study to understand their possible structural impact on coding protein. The prioritized list of the deleterious IRS-2 nsSNPs was acquired from multiple bioinformatics resources, including VEP (SIFT, PolyPhen, and Condel), PROVEAN, SNPs&GO, PMut, and SNAP2. The protein structure stability assessment of these nsSNPs was performed by MuPro and I-Mutant-3.0 servers via structural modeling approaches. The atomic-level structural and molecular dynamics (MD) impact of these nsSNPs were examined using GROMACS 2019.2 software package. The analyses initially predicted 8 high-risk nsSNPs located in the highly conserved regions of IRS-2. The MD simulation analysis eventually prioritized the N232Y, R218C, and R104H nsSNPs that predicted to significantly compromise the structure stability and may affect the biological function of IRS-2. These nsSNPs are predicted as high-risk candidates for diabetes and obesity. The validation of protein structural impact of these shortlisted nsSNPs may provide biochemical insight into the IRS-2-mediated type-2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Polimorfismo de Nucleotídeo Único , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Diabetes Mellitus Tipo 2/genética , Biologia Computacional , Estabilidade Proteica
2.
BMC Infect Dis ; 22(1): 807, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36310166

RESUMO

BACKGROUND: Plasmodium vivax apical membrane antigen-1 (pvama-1) is an important vaccine candidate against Malaria. The genetic composition assessment of pvama-1 from wide-range geography is vital to plan the antigen based vaccine designing against Malaria. METHODS: The blood samples were collected from 84 P. vivax positive malaria patients from different districts of Khyber Pakhtunkhwa (KP) province of Pakistan. The highly polymorphic and immunogenic domain-I (DI) region of pvama-1 was PCR amplified and DNA sequenced. The QC based sequences raw data filtration was done using DNASTAR package. The downstream population genetic analyses were performed using MEGA4, DnaSP, Arlequin v3.5 and Network.5 resources. RESULTS: The analyses unveiled total 57 haplotypes of pvama-1 (DI) in KP samples with majorly prevalent H-14 and H-5 haplotypes. Pairwise comparative population genetics analyses identified limited to moderate genetic distinctions among the samples collected from different districts of KP, Pakistan. In context of worldwide available data, the KP samples depicted major genetic differentiation against the Korean samples with Fst = 0.40915 (P-value = 0.0001), while least distinction was observed against Indian and Iranian samples. The statistically significant negative values of Fu and Li's D* and F* tests indicate the evidence of population expansion and directional positive selection signature. The slow LD decay across the nucleotide distance in KP isolates indicates low nucleotide diversity. In context of reference pvama-1 sequence, the KP samples were identified to have 09 novel non-synonymous single nucleotide polymorphisms (nsSNPs), including several trimorphic and tetramorphic substitutions. Few of these nsSNPs are mapped within the B-cell predicted epitopic motifs of the pvama-1, and possibly modulate the immune response mechanism. CONCLUSION: Low genetic differentiation was observed across the pvama-1 DI among the P. vivax isolates acquired from widespread regions of KP province of Pakistan. The information may implicate in future vaccine designing strategies based on antigenic features of pvama-1.


Assuntos
Malária Vivax , Plasmodium vivax , Humanos , Plasmodium vivax/genética , Irã (Geográfico) , Paquistão/epidemiologia , DNA de Protozoário/genética , Antígenos de Protozoários/genética , Proteínas de Protozoários/genética , Malária Vivax/epidemiologia , Genética Populacional , Variação Genética , Nucleotídeos , Seleção Genética , Análise de Sequência de DNA
3.
Malar J ; 20(1): 335, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344361

RESUMO

BACKGROUND: Plasmodium falciparum is an obligate intracellular parasite of humans that causes malaria. Falciparum malaria is a major public health threat to human life responsible for high mortality. Currently, the risk of multi-drug resistance of P. falciparum is rapidly increasing. There is a need to address new anti-malarial therapeutics strategies to combat the drug-resistance threat. METHODS: The P. falciparum essential proteins were retrieved from the recently published studies. These proteins were initially scanned against human host and its gut microbiome proteome sets by comparative proteomics analyses. The human host non-homologs essential proteins of P. falciparum were additionally analysed for druggability potential via in silico methods to possibly identify novel therapeutic targets. Finally, the PfAp4AH target was prioritized for pharmacophore modelling based virtual screening and molecular docking analyses to identify potent inhibitors from drug-like compounds databases. RESULTS: The analyses identified six P. falciparum essential and human host non-homolog proteins that follow the key druggability features. These druggable targets have not been catalogued so far in the Drugbank repository. These prioritized proteins seem novel and promising drug targets against P. falciparum due to their key protein-protein interactions features in pathogen-specific biological pathways and to hold appropriate drug-like molecule binding pockets. The pharmacophore features based virtual screening of Pharmit resource predicted a lead compound i.e. MolPort-045-917-542 as a promising inhibitor of PfAp4AH among prioritized targets. CONCLUSION: The prioritized protein targets may worthy to test in malarial drug discovery programme to overcome the anti-malarial resistance issues. The in-vitro and in-vivo studies might be promising for additional validation of these prioritized lists of drug targets against malaria.


Assuntos
Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Resistência a Medicamentos , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Fatores de Virulência/química , Fatores de Virulência/genética
4.
Cell Tissue Bank ; 22(2): 297-303, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33169293

RESUMO

Liver dysfunction is a major health problem worldwide. Stem cells therapy has opened up new avenues for researches to treat liver diseases due to their multi lineage differentiation. As mesenchymal stem cells (MSCs) can be differentiated into hepatic lineages in the presence of different exogenous factors, the current study aimed to investigate the impact of carbon tetrachloride (CCl4) induced liver injured mice serum on MSCs differentiation toward hepatocytes in vitro. Male Balb/c mice were treated for liver injury with CCl4 as determined through biochemical tests spectrophotometrically and different growth factors (EGF, HGF) quantification through Sandwich ELISA in both normal and CCl4-induced liver injured mice serum. Mice bone marrow derived-MSCs at second passage were treated with normal and CCl4-induced liver injured mice serum. After 7 days, serum treated MSCs were investigated for hepatocytes like characteristics through RT-PCR. Serum biochemical tests (Bilirubin, ALT and ALP) and sandwich ELISA results of EGF and HGF showed marked increase in CCl4 treated mice serum as compared to normal mice serum. Periodic acid Schiff's staining and urea assay kit confirmed high level of glycogen storage and urea production in cells treated with CCl4-induced liver injured mice serum. RT-PCR results of CCl4-induced liver injured mice serum treated cells also showed expression of hepatic markers (Albumin, Cyto-8, Cyto-18, and Cyto-19). This study confirmed that CCl4-induced liver injured serum treatment can differentiate MSCs into hepatocyte-like cells in vitro.


Assuntos
Hepatócitos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Medula Óssea , Diferenciação Celular , Quimiocina CCL4 , Fígado , Masculino , Camundongos
5.
J Pak Med Assoc ; 70(4): 613-617, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32296204

RESUMO

OBJECTIVE: To determine the frequency of hyperemesis gravidarum (HG) and associated factors among pregnant women. METHODS: The hospital-based cross-sectional study was conducted from October 2016 to March 2017 at Lady Reading Hospital (LRH), Peshawar, District Headquarter Hospital (DHQ), Mardan, and District Headquarter Hospital, Nowshera, Khyber Pakhtunkhwa, Pakistan, and comprised data of 146 pregnant women with hyperemesis gravidarum. Data was compiled using pre-designed proforma. Frequency data of HG was also collected from the two hospitals of Peshawar and Mardan presenting in 2015 and 2016. Blood samples of all patients were analysed for serum electrolytes and complete blood count. Data was analyzed using Microsoft Excel 2010.. RESULTS: Mean frequency of HG in LRH Peshawar and DHQ Mardan during 2015 and 2016 was 14.5% and 8.34% respectively. Of the 146 women, 103(70.5%) belonged to Nowshera, 24(16.4%) to Peshawar and 19(13%) to Mardan. The overall mean age was 27±4.9 years, and maximum number of patients 67(45.89%) were aged 26-30 years. Major risk factor was urinary tract infection in Nowshera 30(29%) and Mardan 5(26.3%), while no major factor was identified in Peshawar. Patients in the first trimester were 59(57.28%) in Nowshera, 19(100%) in Mardan and 19(83.3%) in Peshawar, and primigravidas were 19(18.4%), 6(25%) and 8(42%) respectively. Overall, 119(81.5%) patients had no history of abortion. CONCLUSIONS: The prevalence of hyperemesis gravidarum was high in Nowshera, Mardan and Peshawar, predominantly during the first trimester of pregnancy.


Assuntos
Hiperêmese Gravídica , Infecções Urinárias , Adulto , Estudos Transversais , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Hiperêmese Gravídica/epidemiologia , Hiperêmese Gravídica/fisiopatologia , Hiperêmese Gravídica/terapia , Paquistão/epidemiologia , Gravidez , Trimestres da Gravidez/fisiologia , Prevalência , Fatores de Risco , Infecções Urinárias/diagnóstico , Infecções Urinárias/epidemiologia
6.
Am J Hum Genet ; 98(2): 331-8, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26805784

RESUMO

The sphingosine-1-phosphate receptors (S1PRs) are a well-studied class of transmembrane G protein-coupled sphingolipid receptors that mediate multiple cellular processes. However, S1PRs have not been previously reported to be involved in the genetic etiology of human traits. S1PR2 lies within the autosomal-recessive nonsyndromic hearing impairment (ARNSHI) locus DFNB68 on 19p13.2. From exome sequence data we identified two pathogenic S1PR2 variants, c.323G>C (p.Arg108Pro) and c.419A>G (p.Tyr140Cys). Each of these variants co-segregates with congenital profound hearing impairment in consanguineous Pakistani families with maximum LOD scores of 6.4 for family DEM4154 and 3.3 for family PKDF1400. Neither S1PR2 missense variant was reported among ∼120,000 chromosomes in the Exome Aggregation Consortium database, in 76 unrelated Pakistani exomes, or in 720 Pakistani control chromosomes. Both DNA variants affect highly conserved residues of S1PR2 and are predicted to be damaging by multiple bioinformatics tools. Molecular modeling predicts that these variants affect binding of sphingosine-1-phosphate (p.Arg108Pro) and G protein docking (p.Tyr140Cys). In the previously reported S1pr2(-/-) mice, stria vascularis abnormalities, organ of Corti degeneration, and profound hearing loss were observed. Additionally, hair cell defects were seen in both knockout mice and morphant zebrafish. Family PKDF1400 presents with ARNSHI, which is consistent with the lack of gross malformations in S1pr2(-/-) mice, whereas family DEM4154 has lower limb malformations in addition to hearing loss. Our findings suggest the possibility of developing therapies against hair cell damage (e.g., from ototoxic drugs) through targeted stimulation of S1PR2.


Assuntos
Genes Recessivos , Perda Auditiva/genética , Receptores de Lisoesfingolipídeo/genética , Sequência de Aminoácidos , Povo Asiático/genética , Cromossomos Humanos Par 19/genética , Cromossomos Humanos Par 19/metabolismo , Exoma , Perda Auditiva/diagnóstico , Humanos , Escore Lod , Modelos Logísticos , Lisofosfolipídeos/genética , Lisofosfolipídeos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Esfingosina/genética , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato
7.
Microb Pathog ; 125: 219-229, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30243554

RESUMO

The Burkholderia pseudomallei is a unique bio-threat and causative agent of melioidosis. The B. pseudomallei Bp1651 strain has been isolated from a chronic cystic fibrosis patient. The genome-level DNA sequences information of this strain has recently been published. Unfortunately, there is no commercial vaccine available till date to combat B. pseudomallei infection. The genome-wide prioritization approaches are widely used for the identification of potential therapeutic candidates against pathogens. In the present study, we utilized the recently available annotated genomic information of B. pseudomallei Bp1651 through subtractive genomics and reverse-vaccinology strategies to identify its potential vaccine targets. The analyses identified more than 60 pathogen-specific, human host non-homologous proteins that may prioritize in future studies to investigate therapeutic targets for B. pseudomallei Bp1651. The potential B and T-cells antigenic determinant peptides from these pathogen-specific proteins were cataloged using antigenicity and epitope prediction tools. The analyses unveiled a promising antigenic peptide "FQWEFSLSV" from protein-export membrane protein (SecF) of Bp1651 strain, which was predicted to interact with multiple class I and class II MHC alleles with IC50 value < 100 nM. The molecular docking analysis verified favorable molecular interaction of this lead antigenic peptide with the ligand-binding pocket residues of HLA A*02:06 human host immune cell surface receptor. This peptide is predicted to be a suitable epitope capable to elicit the cell-mediated immune response against the B. pseudomallei pathogen. The putative epitopes and proteins identified in this study may be promising vaccine targets against Bp1651 as well as other pathogenic strains of B. pseudomallei.


Assuntos
Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/imunologia , Genômica/métodos , Vacinologia/métodos , Vacinas Bacterianas/isolamento & purificação , Biologia Computacional/métodos , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Genoma Bacteriano , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Melioidose/prevenção & controle , Simulação de Acoplamento Molecular , Ligação Proteica
8.
J Biomol Struct Dyn ; 42(4): 1826-1845, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37114651

RESUMO

Three triorganotin(IV) compounds, R3Sn(L), with R = CH3 (1), n-C4H9 (2) and C6H5 (3), and LH = 4-[(2-chloro-4-methylphenyl)carbamoyl]butanoic acid, were prepared and confirmed by various techniques. A five-coordinate, distorted trigonal-bipyramidal geometry was elucidated for tin(IV) centres both in solution and solid states. An intercalation mode was confirmed for the compound SS-DNA interaction by UV-visible, viscometric techniques and molecular docking. MD simulation revealed stable binding of LH with SS-DNA. Anti-bacterial investigation revealed 2 to be generally the most potent, especially against Sa and Ab, i.e. having the lowest MIC values (≤0.25 µg/mL) compared to the standard anti-biotics vancomycin-HCl (MIC = 1 µg/mL) and colistin-sulphate (MIC = 0.25 µg/mL). Similarly, the anti-fungal profile shows 2 exhibits 100% inhibition against Ca and Cn fungal strains and has MIC values (≤0.25 µg/mL) comparatively lower than standard drug fluconazole (0.125 and 8 µg/mL for Ca and Cn, respectively). Compound 2 has the greatest activity with CC50 ≤ 25 µg/mL and HC50 > 32 µg/mL performed against HEC239 and RBC cell lines. The anti-cancer potential was assessed against the MG-U87 cell line, using cisplatin as the standard (133 µM), indicates 2 displays the greatest activity (IC50: 5.521 µM) at a 5 µM dose. The greatest anti-leishmanial potential was observed for 2 (87.75 at 1000 µg/mL) in comparison to amphotericin B (90.67). The biological assay correlates with the observed maximum of 89% scavenging activity exhibited by 2. The Swiss-ADME data publicised the screened compounds generally follow the rule of 5 of drug-likeness and have good bioavailability potential.


Assuntos
DNA , Simulação de Acoplamento Molecular , Ácido Butírico , Linhagem Celular , DNA/química , Simulação por Computador , Testes de Sensibilidade Microbiana
9.
J Biomol Struct Dyn ; : 1-11, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294714

RESUMO

Inhibitors of α-glucosidase have been used to treat type-2 diabetes (T2DM) by preventing the breakdown of carbohydrates into glucose and prevent enhancing glucose conversion. Structure-based virtual screening (SBVS) was used to generate novel chemical scaffold-ligand α-glucosidase inhibitors. The databases were screened against the receptor α-glucosidase using SBVS and molecular dynamics simulation (MDS) techniques in this study. Based on molecular docking studies, three and two compounds of α-glucosidase inhibitors were chosen from a commercial database (ZINC) and an In-house database for this study respectively. The mode of binding interactions of the selected compounds later predicted their α-glucosidase inhibitory potential. Finally, one out of three lead compound from ZINC and one out of two lead compound from In-house database were shortlisted based on interactions. Furthermore, MDS and post-MDS strategies were used to refine and validate the shortlisted leads along with the reference acarbose/α-glucosidase. The Hits' ability to inhibit α-glucosidase was predicted by SBVS, indicating that these compounds have good inhibitory activities. The lead inhibitor's structure may serve as templates for the design of novel inhibitors, and in vitro testing to confirm their anti-diabetic potential is necessary. These insights can help rationally design new effective anti-diabetic drugs.Communicated by Ramaswamy H. Sarma.

10.
Future Med Chem ; 16(6): 497-511, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38372209

RESUMO

Background: Unsymmetrical thioureas 1-20 were synthesized and then characterized by various spectroscopy techniques such as UV, IR, fast atom bombardment (FAB)-MS, high-resolution FAB-MS, 1H-NMR and 13C-NMR. Methods: Synthetic compounds 1-20 were tested for their ability for antioxidant, lipoxygenase and xanthine oxidase activities. Results: Compounds 1, 2, 9, 12 and 15 exhibited strong antioxidant potential, whereas compounds 1-3, 9, 12, 15 and 19 showed good to moderate lipoxygenase activity. Ten compounds demonstrated moderate xanthine oxidase inhibition. Conclusion: Compound 15 displayed the highest potency among the series, exhibiting good antioxidant, lipoxygenase and xanthine oxidase activities. Theoretical calculations using density functional theory and molecular docking studies supported the experimental findings, indicating the potential of the synthesized compounds as potent antioxidants, lipoxygenases and xanthine oxidase agents.


Assuntos
Antioxidantes , Lipoxigenase , Antioxidantes/química , Simulação de Acoplamento Molecular , Xantina Oxidase/química , Xantina Oxidase/metabolismo , Inibidores Enzimáticos/química , Tioureia/farmacologia , Tioureia/química , Relação Estrutura-Atividade
11.
ACS Omega ; 9(14): 15904-15914, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617699

RESUMO

Montmorillonite clay and agar are naturally occurring materials of significant importance in designing biocompatible materials tailored for applications in biotechnology and medicine. The introduction of magnetic properties has the potential to significantly boost their characteristics and expand their applications. In this study, we have successfully synthesized highly intercalated magnetic composites, incorporating magnetic iron oxide nanoparticles (MNPs), montmorillonite clay (MMT), and agar (AG), through a thermo-physicomechanical method. Three samples of MMT-AG with 2, 1.5, and 0.5% MNPs and three sample composites of MNPs-AG with 2, 1, and 0.5% MMT clay are prepared. The synthesized composites were characterized by SEM, XRD, TGA, DTA, and FTIR. SEM analysis revealed a uniform dispersion of MNPs and MMT in the composite. The XRD pattern confirmed the presence of MNPs in the composite site. The TGA and DTA results demonstrated improved thermal stability due to the MNP incorporation. FTIR spectra showed all of the constituents of agar, MNPs, and MMT clay. The swelling ratio was observed to range from 835% to 1739%. The swelling study indicated an increased hydrophobicity with the addition of MNPs to the composite. Antibacterial activities revealed a significant inhibition of Escherichia coli (E. coli) growth by ranging from 10 to 19 nm in the composite. The composite also exhibited a considerable antioxidant action, with IC50 values of 7.96, 46.55, and 57.58 µg/mL, and electrical properties just like conductors.

12.
J Transl Med ; 11: 78, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23531302

RESUMO

BACKGROUND: Mesenchymal stem cell (MSC) transplantation has emerged as a promising therapy for liver fibrosis. Issues concerning poor MSC survival and engraftment in the fibrotic liver still persist and warrant development of a strategy to increase MSC potency for liver repair. The present study was designed to examine a synergistic role for Interleukin-6 (IL-6) and MSCs therapy in the recovery of carbon tetrachloride (CCl(4)) induced injured hepatocytes in vitro and in vivo. METHODS: Injury was induced through 3 mM and 5 mM CCl(4) treatment of cultured hepatocytes while fibrotic mouse model was established by injecting 0.5 ml/kg CCl(4) followed by treatment with IL-6 and MSCs. Effect of MSCs and IL-6 treatment on injured hepatocytes was determined by lactate dehydrogenase release, RT-PCR for (Bax, Bcl-xl, Caspase3, Cytokeratin 8, NFκB, TNF-α) and annexin V apoptotic detection. Analysis of MSC and IL-6 treatment on liver fibrosis was measured by histopathology, PAS, TUNEL and Sirius red staining, RT-PCR, and liver function tests for Bilirubin and Alkaline Phosphatase (ALP). RESULTS: A significant reduction in LDH release and apoptosis was observed in hepatocytes treated with a combination of MSCs and IL-6 concomitant with upregulation of anti-apoptotic gene Bcl-xl expression and down regulation of bax, caspase3, NFκB and TNF-α. Adoptive transfer of MSCs in fibrotic liver pretreated with IL-6 resulted increased MSCs homing and reduced fibrosis and apoptosis. Hepatic functional assessment demonstrated reduced serum levels of Bilirubin and ALP. CONCLUSION: Pretreatment of fibrotic liver with IL-6 improves hepatic microenvironment and primes it for MSC transplantation leading to enhanced reduction of liver injury after fibrosis. Synergistic effect of IL-6 and MSCs seems a favored therapeutic option in attenuation of liver apoptosis and fibrosis accompanied by improved liver function.


Assuntos
Regulação da Expressão Gênica , Interleucina-6/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Animais , Apoptose , Tetracloreto de Carbono/farmacologia , Técnicas de Cocultura , Feminino , Glicogênio/metabolismo , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Inflamação , Camundongos , Camundongos Endogâmicos C57BL
13.
Genes (Basel) ; 14(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36833368

RESUMO

Hepatitis is one of the common liver diseases, imposing a heavy health burden worldwide. Acute hepatitis may develop into chronic hepatitis, progressing to cirrhosis and hepatocellular carcinoma. In the present study, the expression of miRNAs was quantified by real-time PCR, such as miRNA-182, 122, 21, 150, 199, and 222. Along with the control group, HCV was divided into chronic, cirrhosis, and HCC groups. The treated group was also included after the successful treatment of HCV. Biochemical parameters, such as ALT, AST, ALP, bilirubin, viral load, and AFP (HCC), were also evaluated in all of the study groups. We compared the control and diseased groups; these parameters showed significant results (p = 0.000). The viral load was high in HCV but was not detected after treatment. miRNA-182 and miRNA-21 were overexpressed with disease progression, while the expression of miRNA-122 and miRNA-199 was increased compared with the control, but decreased in the cirrhosis stage compared with chronic and HCC. The expression of miRNA-150 was increased in all of the diseased groups compared with the control, but decreased compared with the chronic group. We compared the chronic and treated groups and then all of these miRNAs were down-regulated after treatment. These microRNAs could be used as potential biomarkers for diagnosing different stages of HCV.


Assuntos
Carcinoma Hepatocelular , Hepatite C , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Paquistão , Cirrose Hepática
14.
Heliyon ; 9(8): e19160, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37636438

RESUMO

In the current research work, an amide based metal carboxylate chemical ([((5-((5-(2-hydroxyethyl)-4-methylthiazol-3-ium-3-yl)methyl)-2-methylpyrimidin-4-yl)amino)bis((4-((4-methoxy-2-nitrophenyl)amino)-4-oxobutanoyl)oxy)zinc]) was identified as anti-diabetic analgesic and anti-inflammatory. The identified chemical(MT-1) was tested for acute toxicity (the MT-1 was fund safe), antidiabetic analgesic, and anti-inflammatory potentials. The in-vitro study was conducted for antidiabetic enzyme inhibition (α-amylase and α-glucosidase) and the in-vivo studies included analgesic (acetic acid-induced writing and hot plate model) and anti-inflammatory (carrageenan etc induced edema) effects. The tested compound showed 88.63% (IC50 = 3.23 µg/ml) and 89.10%(IC50 = 5.10 µg/ml) againstα-amylase and α-glucosidase respectively. A significant (p < 0.001) analgesic effect was noted by MT-1 in acetic acid-induced animal models with a percent effect of 86.00, 60.,06, and 55.29 at the tested doses of 20, 1,0, and 5 mg/kg respectively. In the case of the hot plate model, the MT-1 showed a significant (p < 0.001) effect with maximum percent prolongation in latency observed after 60 min.08, 22.2,9, and 11.61) against 20, 1,0, and 5 mg/kg. The analgesic effect in the hot plate model was significantly (p < 0.01) reversed by the injection of naloxone (0.125 mg/kg). The paw edema induced by carrageenan, histamine, bradykinin, arachidonic acid, and PGE2 was significantly antagonized with percent attenuation of 34.09, 33.57, 34.60, 34.14, and 48.04 respectively. Furthermore, to predict the interactions between the MT-1 compound and COX-2 molecular docking was carried out and the result was compared with the standard compound. The docking score of MT-1 was predicted as -6.30 while that of Diclofenac was predicted as -6.82. Both compounds made several hydrogen bond interactions with the active site of the COX-2 enzyme. The docking study revealed the potent inhibitory potential of the compound MT-1 against the COX-2 receptor.

15.
J Biomol Struct Dyn ; : 1-15, 2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37424185

RESUMO

Monkeypox virus (MPXV) is an orthopoxvirus, causing zoonotic infections in humans with smallpox-like symptoms. The WHO reported MPXV cases in May 2022 and the outbreak caused significant morbidity threats to immunocompromised individuals and children. Currently, no clinically validated therapies are available against MPXV infections. The present study is based on immunoinformatics approaches to design mRNA-based novel vaccine models against MPXV. Three proteins were prioritized based on high antigenicity, low allergenicity, and toxicity values to predict T- and B-cell epitopes. Lead T- and B-cell epitopes were used to design vaccine constructs, linked with epitope-specific linkers and adjuvant to enhance immune responses. Additional sequences, including Kozak sequence, MITD sequence, tPA sequence, Goblin 5', 3' UTRs, and a poly(A) tail were added to design stable and highly immunogenic mRNA vaccine construct. High-quality structures were predicted by molecular modeling and 3D-structural validation of the vaccine construct. Population coverage and epitope-conservancy speculated broader protection of designed vaccine model against multiple MPXV infectious strains. MPXV-V4 was eventually prioritized based on its physicochemical and immunological parameters and docking scores. Molecular dynamics and immune simulations analyses predicted significant structural stability and binding affinity of the top-ranked vaccine model with immune receptors to elicit cellular and humoral immunogenic responses against the MPXV. The pursuance of experimental and clinical follow-up of these prioritized constructs may lay the groundwork to develop safe and effective vaccine against MPXV.Communicated by Ramaswamy H. Sarma.

16.
ACS Omega ; 8(14): 13332-13341, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37065064

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder that affects 35 million people worldwide. However, no potential therapeutics currently are available for AD because of the multiple factors involved in it, such as regulatory factors with their candidate genes, factors associated with the expression levels of its corresponding genes, and many others. To date, 29 novel loci from GWAS have been reported for AD by the Psychiatric Genomics Consortium (PGC2). Nevertheless, the main challenge of the post-GWAS era, namely to detect significant variants of the target disease, has not been conducted for AD. N6-methyladenosine (m6a) is reported as the most prevalent mRNA modification that exists in eukaryotes and that influences mRNA nuclear export, translation, splicing, and the stability of mRNA. Furthermore, studies have also reported m6a's association with neurogenesis and brain development. We carried out an integrative genomic analysis of AD variants from GWAS and m6a-SNPs from m6AVAR to identify the effects of m6a-SNPs on AD and identified the significant variants using the statistically significance value (p-value <0.05). The cis-regularity variants with their corresponding genes and their influence on gene expression in the gene expression profiles of AD patients were determined, and showed 1458 potential m6a-SNPs (based on p-value <0.05) associated with AD. eQTL analysis showed that 258 m6a-SNPs had cis-eQTL signals that overlapped with six significant differentially expressed genes based on p-value <0.05 in two datasets of AD gene expression profiles. A follow-up study to elucidate the impact of our identified m6a-SNPs in the experimental study would validate our findings for AD, which would contribute to the etiology of AD.

17.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37259449

RESUMO

(1) Background: Liver fibrosis is currently one of the top ten causes of death worldwide. Stem cells transplantation using mesenchymal stem cells (MSCs) is an alternative therapy which is used in the place of organ transplant, due to the incapacity of stem cells to endure oxidative stress in the damage site, thus affecting the healing process. The present study aimed to enhance the therapeutic potential of MSCs using combined therapy, along with the novel synthetic compounds of benzimidazol derivatives. (2) Methods: Eighteen compound series (benzimidazol derivatives) were screened against liver fibrosis using an in vitro CCl4-induced injury model on cultured hepatocytes. IC50 values were calculated on the bases of LDH assay and cell viability assay. (3) Results: Among the eighteen compounds, compounds (10), (14) and (18) were selected on the basis of IC50 value, and compound (10) was the most potent and had the lowest IC50 value in the LDH assay (8.399 ± 0.23 uM) and cell viability assay (4.73 ± 0.37 uM). Next, these compounds were combined with MSCs using an in vitro hepatocytes injury culture and in vivo rat fibrotic model. The effect of the MSCs + compounds treatment on injured hepatocytes was evaluated using LDH assay, cell viability assay, GSH assay and real-time PCR analysis and immuno-staining for caspase-3. Significant reductions in LDH level, caspase-3 and apoptotic marker genes were noted in MSCs + compounds-treated injured hepatocytes. In vivo data also showed the increased homing of the MSCs, along with compounds after transplantation. Real-time PCR analysis and TUNEL assay results also support our study. (4) Conclusions: It was concluded that compounds (10), (14) and (18) can be used in combination with MSCs to reduce liver fibrosis.

18.
Biomed Pharmacother ; 164: 114872, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37245338

RESUMO

Therapeutic moieties derived from medicinal plants as well as plants-based ecofriendly processes for producing selenium nanoparticles have shown great promise in the management of type 2 diabetes mellitus (T2DM). The current study was aimed to assess the anti-diabetic potentials of Fagonia cretica mediated biogenic selenium nanoparticles (FcSeNPs) using in-vitro and in-vivo approaches. The bio-synthesized FcSeNPs were characterized using various techniques including UV-VIS spectrophotometry and FTIR analysis. The in-vitro efficacy of FcSeNPs were assessed against α-glucosidase, α-amylase enzymes as well as the anti-radical studies were performed using DPPH and ABTS free radicals scavenging assays. For in-vivo studies, 20 Male Balb/C albino-mice were randomly divided into 4 groups (n = 5) including normal group, disease group (Diabetic group with no treatment), control group and treatment group (Diabetic group treated with FcSeNPs). Further, biochemistry markers including pancreas, liver, kidney and lipid profile were assessed for all treatment groups. The FcSeNPs exhibited a dose-dependent inhibition against α-amylase and α-glucosidase at 62-1000 µg mL-1 concentration with IC50 values of 92 and 100 µg mL-1 respectively. In antioxidant experiments, the FcSeNPs demonstrated significant radicals scavenging effect against DPPH and ABTS radicals. In STZ-induced diabetic mice, a considerable decline in blood glucose level was observed after treatment with FcSeNPs. Anti-hyperglycemic effect of FcSeNPs treated animals were high (105 ± 3.22**) as compared to standard drug (128.6 ± 2.73** mg dL-1). Biochemical investigations revealed that all biochemical parameters for pancreas, liver function, renal function panel and lipid profile were significantly lowered in FcSeNPs treated animals. Our findings indicate a preliminary multi-target efficacy for FcSeNPs against type-2 diabetes and thus warrant further detailed studies.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Selênio , Camundongos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Selênio/farmacologia , Estresse Oxidativo , Diabetes Mellitus Experimental/tratamento farmacológico , alfa-Glucosidases/farmacologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Lipídeos/farmacologia , alfa-Amilases , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química
19.
Front Cell Infect Microbiol ; 13: 1017315, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033487

RESUMO

Neisseria gonorrhoeae is an emerging multidrug resistance pathogen that causes sexually transmitted infections in men and women. The N. gonorrhoeae has demonstrated an emerging antimicrobial resistance against reported antibiotics, hence fetching the attention of researchers to address this problem. The present in-silico study aimed to find putative novel drug and vaccine targets against N. gonorrhoeae infection by the application of bioinformatics approaches. Core genes set of 69 N. gonorrhoeae strains was acquired from complete genome sequences. The essential and non-homologous metabolic pathway proteins of N. gonorrhoeae were identified. Moreover, different bioinformatics databases were used for the downstream analysis. The DrugBank database scanning identified 12 novel drug targets in the prioritized list. They were preferred as drug targets against this bacterium. A viable vaccine is unavailable so far against N. gonorrhoeae infection. In the current study, two outer-membrane proteins were prioritized as vaccine candidates via reverse vaccinology approach. The top lead B and T-cells overlapped epitopes were utilized to generate a chimeric vaccine construct combined with immune-modulating adjuvants, linkers, and PADRE sequences. The top ranked prioritized vaccine construct (V7) showed stable molecular interaction with human immune cell receptors as inferred during the molecular docking and MD simulation analyses. Considerable response for immune cells was interpreted by in-silico immune studies. Additional tentative validation is required to ensure the effectiveness of the prioritized vaccine construct against N. gonorrhoeae infection. The identified proteins can be used for further rational drug and vaccine designing to develop potential therapeutic entities against the multi-drug resistant N. gonorrhoeae.


Assuntos
Gonorreia , Neisseria gonorrhoeae , Masculino , Feminino , Humanos , Neisseria gonorrhoeae/genética , Simulação de Acoplamento Molecular , Genômica , Gonorreia/tratamento farmacológico , Gonorreia/microbiologia , Biologia Computacional , Análise de Dados , Computadores
20.
Bioengineering (Basel) ; 10(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37106617

RESUMO

Lumpy skin disease is a fatal emerging disease of cattle, which has started to gain extensive attention due to its rapid incursions across the globe. The disease epidemic causes economic loss and cattle morbidity. Currently, there are no specific treatments and safe vaccines against the lumpy skin disease virus (LSDV) to halt the spread of the disease. The current study uses genome-scan vaccinomics analyses to prioritize promiscuous vaccine candidate proteins of the LSDV. These proteins were subjected to top-ranked B- and T-cell epitope prediction based on their antigenicity, allergenicity, and toxicity values. The shortlisted epitopes were connected using appropriate linkers and adjuvant sequences to design multi-epitope vaccine constructs. Three vaccine constructs were prioritized based on their immunological and physicochemical properties. The model constructs were back-translated to nucleotide sequences and codons were optimized. The Kozak sequence with a start codon along with MITD, tPA, Goblin 5', 3' UTRs, and a poly(A) tail sequences were added to design a stable and highly immunogenic mRNA vaccine. Molecular docking followed by MD simulation analysis predicted significant binding affinity and stability of LSDV-V2 construct within bovine immune receptors and predicted it to be the top-ranked candidate to stimulate the humeral and cellular immunogenic responses. Furthermore, in silico restriction cloning predicted feasible gene expression of the LSDV-V2 construct in a bacterial expression vector. It could prove worthwhile to validate the predicted vaccine models experimentally and clinically against LSDV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA