Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 149(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35142352

RESUMO

Mammalian oocyte maturation is a unique asymmetric division, which is mainly because of actin-based spindle migration to the cortex. In the present study, we report that a kinesin motor KIFC1, which is associated with microtubules for the maintenance of spindle poles in mitosis, is also involved in actin dynamics in murine oocyte meiosis, co-localizing with microtubules during mouse oocyte maturation. Depletion of KIFC1 caused the failure of polar body extrusion, and we found that meiotic spindle formation and chromosome alignment were disrupted. This might be because of the effects of KIFC1 on HDAC6 and NAT10-based tubulin acetylation, which further affected microtubule stability. Mass spectroscopy analysis revealed that KIFC1 also associated with several actin nucleation factors and we found that KIFC1 was essential for the distribution of actin filaments, which further affected spindle migration. Depletion of KIFC1 leaded to aberrant expression of formin 2 and the ARP2/3 complex, and endoplasmic reticulum distribution was also disturbed. Exogenous KIFC1 mRNA supplement could rescue these defects. Taken together, as well as its roles in tubulin acetylation, our study reported a previously undescribed role of kinesin KIFC1 on the regulation of actin dynamics for spindle migration in mouse oocytes.


Assuntos
Cinesinas , Tubulina (Proteína) , beta Carioferinas/metabolismo , Acetilação , Actinas/metabolismo , Animais , Cinesinas/genética , Mamíferos/metabolismo , Meiose , Camundongos , Oócitos/metabolismo , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
2.
Cell Mol Life Sci ; 79(8): 422, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835966

RESUMO

Microtubule dynamics ensure multiple cellular events during oocyte meiosis, which is critical for the fertilization and early embryo development. KIF15 (also termed Hklp2) is a member of kinesin-12 family motor proteins, which participates in Eg5-related bipolar spindle formation in mitosis. In present study, we explored the roles of KIF15 in mouse oocyte meiosis. KIF15 expressed during oocyte maturation and localized with microtubules. Depletion or inhibition of KIF15 disturbed meiotic cell cycle progression, and the oocytes which extruded the first polar body showed a high aneuploidy rate. Further analysis showed that disruption of KIF15 did not affect spindle morphology but resulted in chromosome misalignment. This might be due to the reduced stability of the K-fibers, which further induced the loss of kinetochore-microtubule attachment and activated spindle assembly checkpoint, showing with the failed release of Bub3 and BubR1. Based on mass spectroscopy analysis and coimmunoprecipitation data we showed that KIF15 was responsible for recruiting HDAC6, NAT10 and SIRT2 to maintain the acetylated tubulin level, which further affected tubulin acetylation for microtubule stability. Taken together, these results suggested that KIF15 was essential for the microtubule acetylation and cell cycle control during mouse oocyte meiosis.


Assuntos
Cinesinas , Tubulina (Proteína) , Acetilação , Animais , Cinesinas/genética , Pontos de Checagem da Fase M do Ciclo Celular , Meiose , Camundongos , Microtúbulos/metabolismo , Oócitos/metabolismo , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
3.
J Cell Physiol ; 237(12): 4580-4590, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36317691

RESUMO

Polo like kinase 1 (PLK1) is a protein kinase involved in regulating the spindle assembly and cell cycle control in mammalian oocytes. SUMOylation, one way of post-translational modification, regulates oocyte meiosis by controlling several substrates. However, the relation between PLK1 and SUMOylation in oocytes is still unknown. In this study, we investigated that whether PLK1 was modified by SUMOylation in oocytes and its potential relationship with age-related meiotic abnormalities. We showed that PLK1 had colocalization and protein interaction with Small Ubiquitin-Like Modifier (SUMO)-1 and SUMO-2/3 in mouse oocytes, indicating that PLK1 could be modified by SUMO-1 and SUMO-2/3. Overexpression of PLK1 SUMOylation site mutants PLK1K178R and PLK1K191R caused the increase of the abnormal spindle rate of oocytes and the decline of the first polar body extrusion rate with the abnormal localization of PLK1, suggesting that the SUMOylation modification of PLK1 is essential for normal meiosis in oocytes. Compared with young mice, the expression of PLK1 protein increased and the expression of SUMO-1 and SUMO-2/3 protein decreased in the oocytes of aged mice, indicating that the SUMOylation of PLK1 might be related to the mouse aging. Therefore, our data suggested that PLK1 could be SUMOylated by SUMO-1 and SUMO-2/3 in mouse oocytes and SUMOylation of PLK1 regulated the meiosis progression of oocytes which was related with aging.


Assuntos
Proteínas de Ciclo Celular , Meiose , Oócitos , Proteínas Serina-Treonina Quinases , Sumoilação , Animais , Camundongos , Proteínas de Ciclo Celular/metabolismo , Oócitos/metabolismo , Fuso Acromático/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fatores Etários , Quinase 1 Polo-Like
4.
Microsc Microanal ; 27(2): 400-408, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33478608

RESUMO

GBF1 [Golgi brefeldin A (BFA) resistance factor 1] is a member of the guanine nucleotide exchange factors Arf family. GBF1 localizes at the cis-Golgi and endoplasmic reticulum (ER)-Golgi intermediate compartment where it participates in ER-Golgi traffic by assisting in the recruitment of the coat protein COPI. However, the roles of GBF1 in oocyte meiotic maturation are still unknown. In the present study, we investigated the regulatory functions of GBF1 in mouse oocyte organelle dynamics. In our results, GBF1 was stably expressed during oocyte maturation, and GBF1 localized at the spindle periphery during metaphase I. Inhibiting GBF1 activity led to aberrant accumulation of the Golgi apparatus around the spindle. This may be due to the effects of GBF1 on the localization of GM130, as GBF1 co-localized with GM130 and inhibiting GBF1 induced condensation of GM130. Moreover, the loss of GBF1 activity affected the ER distribution and induced ER stress, as shown by increased GRP78 expression. Mitochondrial localization and functions were affected, as the mitochondrial membrane potential was altered. Taken together, these results suggest that GBF1 has wide-ranging effects on the distribution and functions of Golgi apparatus, ER, and mitochondria as well as normal polar body formation in mouse oocytes.


Assuntos
Fatores de Ribosilação do ADP , Fatores de Troca do Nucleotídeo Guanina , Fatores de Ribosilação do ADP/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Complexo de Golgi/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Camundongos , Oócitos/metabolismo
5.
Adv Sci (Weinh) ; 11(4): e2303009, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38014604

RESUMO

ADP-ribosylation factor 1 (Arf1) is a small GTPase belonging to the Arf family. As a molecular switch, Arf1 is found to regulate retrograde and intra-Golgi transport, plasma membrane signaling, and organelle function during mitosis. This study aimed to explore the noncanonical roles of Arf1 in cell cycle regulation and cytoskeleton dynamics in meiosis with a mouse oocyte model. Arf1 accumulated in microtubules during oocyte meiosis, and the depletion of Arf1 led to the failure of polar body extrusion. Unlike mitosis, it finds that Arf1 affected Myt1 activity for cyclin B1/CDK1-based G2/M transition, which disturbed oocyte meiotic resumption. Besides, Arf1 modulated GM130 for the dynamic changes in the Golgi apparatus and Rab35-based vesicle transport during meiosis. Moreover, Arf1 is associated with Ran GTPase for TPX2 expression, further regulating the Aurora A-polo-like kinase 1 pathway for meiotic spindle assembly and microtubule stability in oocytes. Further, exogenous Arf1 mRNA supplementation can significantly rescue these defects. In conclusion, results reported the noncanonical functions of Arf1 in G2/M transition and meiotic spindle organization in mouse oocytes.


Assuntos
Fator 1 de Ribosilação do ADP , Fuso Acromático , Camundongos , Animais , Fator 1 de Ribosilação do ADP/genética , Fator 1 de Ribosilação do ADP/metabolismo , Fuso Acromático/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Meiose , Oócitos/metabolismo , Complexo de Golgi/metabolismo
6.
Hum Reprod Update ; 27(6): 1013-1029, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34227671

RESUMO

BACKGROUND: RAB GTPases constitute the largest family of small GTPases and are found in all eukaryotes. RAB GTPases regulate components of the endomembrane system, the nucleus and the plasma membrane, and are involved in intracellular actin/tubulin-dependent vesicle movement, membrane fusion and cell growth in mitosis. OBJECTIVE AND RATIONALE: RAB GTPases play multiple critical roles during both female and male meiosis. This review summarizes the progress made in our understanding of the role of RAB GTPases in female and male meiosis in different species. We also discuss the potential relationship between RAB GTPases and oocyte/sperm quality, which may help in understanding the mechanisms underlying oogenesis and spermatogenesis and potential genetic causes of infertility. SEARCH METHODS: The PubMed database was searched for articles published between 1991 and 2020 using the following terms: 'RAB', 'RAB oocyte', 'RAB sperm' and 'RAB meiosis'. OUTCOMES: An analysis of 126 relevant articles indicated that RAB GTPases are present in all eukaryotes, and ten subfamilies (almost 70 members) are expressed in human cells. The roles of 25 RAB proteins and orthologues in female meiosis and 12 in male meiosis have been reported. RAB proteins are essential for the accurate continuity of genetic material, successful fertilization and the normal growth of offspring. Distinct and crucial functions of RAB GTPases in meiosis have been reported. In oocytes, RAB GTPases are involved in spindle organization, kinetochore-microtubule attachment, chromosome alignment, actin filament-mediated spindle migration, cytokinesis, cell cycle and oocyte-embryo transition. RAB GTPases function in mitochondrial processes and Golgi-mediated vesicular transport during female meiosis, and are critical for cortical granule transport during fertilization and oocyte-embryo transition. In sperm, RAB GTPases are vital for cytoskeletal organization and successful cytokinesis, and are associated with Golgi-mediated acrosome formation, membrane trafficking and morphological changes of sperm cells, as well as the exocytosis-related acrosome reaction and zona reaction during fertilization. WIDER IMPLICATIONS: Abnormal expression of RAB GTPases disrupts intracellular systems, which may induce diverse diseases. The roles of RAB proteins in female and male reproductive systems, thus, need to be considered. The mechanisms underlying the function of RAB GTPases and the binding specificity of their effectors during oogenesis, spermatogenesis and fertilization remain to be studied. This review should contribute to our understanding of the molecular mechanisms of oogenesis and spermatogenesis and potential genetic causes of infertility.


Assuntos
Oogênese , Proteínas rab de Ligação ao GTP , Segregação de Cromossomos , Feminino , Humanos , Masculino , Meiose , Oócitos/fisiologia , Oogênese/fisiologia , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
7.
Cell Prolif ; 54(9): e13104, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34323331

RESUMO

OBJECTIVES: RAB14 is a member of small GTPase RAB family which localizes at the endoplasmic reticulum (ER), Golgi apparatus and endosomal compartments. RAB14 acts as molecular switches that shift between a GDP-bound inactive state and a GTP-bound active state and regulates circulation of vesicles between the Golgi and endosomal compartments. In present study, we investigated the roles of RAB14 during oocyte meiotic maturation. MATERIALS AND METHODS: Microinjection with siRNA and exogenous mRNA for knock down and rescue, and immunofluorescence staining, Western blot and real-time RT-PCR were utilized for the study. RESULTS: Our results showed that RAB14 localized in the cytoplasm and accumulated at the cortex during mouse oocyte maturation, and it was also enriched at the spindle periphery. Depletion of RAB14 did not affect polar body extrusion but caused large polar bodies, indicating the failure of asymmetric division. We found that absence of RAB14 did not affect spindle organization but caused the spindle migration defects, and this might be due to the regulation on cytoplasmic actin assembly via the ROCK-cofilin signalling pathway. We also found that RAB14 depletion led to aberrant Golgi apparatus distribution. Exogenous Myc-Rab14 mRNA supplement could significantly rescue these defects caused by Rab14 siRNA injection. CONCLUSIONS: Taken together, our results suggest that RAB14 affects ROCK-cofilin pathway for actin-based spindle migration and Golgi apparatus distribution during mouse oocyte meiotic maturation.


Assuntos
Meiose/fisiologia , Oócitos/metabolismo , Oócitos/fisiologia , Oogênese/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Actinas , Animais , Citoplasma/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Fosforilação/fisiologia , Transdução de Sinais/fisiologia , Quinases Associadas a rho/metabolismo
8.
Waste Manag ; 34(11): 2355-64, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25151443

RESUMO

The management of health-care waste (HCW) is a major challenge for municipalities, particularly in the cities of developing countries. Selection of the best treatment technology for HCW can be viewed as a complicated multi-criteria decision making (MCDM) problem which requires consideration of a number of alternatives and conflicting evaluation criteria. Additionally, decision makers often use different linguistic term sets to express their assessments because of their different backgrounds and preferences, some of which may be imprecise, uncertain and incomplete. In response, this paper proposes a modified MULTIMOORA method based on interval 2-tuple linguistic variables (named ITL-MULTIMOORA) for evaluating and selecting HCW treatment technologies. In particular, both subjective and objective importance coefficients of criteria are taken into consideration in the developed approach in order to conduct a more effective analysis. Finally, an empirical case study in Shanghai, the most crowded metropolis of China, is presented to demonstrate the proposed method, and results show that the proposed ITL-MULTIMOORA can solve the HCW treatment technology selection problem effectively under uncertain and incomplete information environment.


Assuntos
Técnicas de Apoio para a Decisão , Eliminação de Resíduos de Serviços de Saúde/métodos , Modelos Teóricos , China , Cidades , Humanos , Linguística , Eliminação de Resíduos de Serviços de Saúde/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA