Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 265(Pt 2): 131085, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521335

RESUMO

In contrast to conventional particles characterized by isotropic surfaces, Janus particles possess anisotropic surfaces, resulting in unique physicochemical properties and functional attributes. In recent times, there has been a surge in interest regarding the synthesis of Janus particles using biological macromolecules. Various synthesis techniques have been developed for the fabrication of Janus materials derived from biomass. These methods include electrospinning, freeze-drying, secondary casting film formation, self-assembly technology, and other approaches. In the realm of Janus composite materials, those derived from biomass have found extensive applications in diverse domains including oil-water separation, sensors, photocatalysis, and medical materials. This article provides a systematic introduction to the classification of Janus materials, with a specific focus on various types of biomass-based Janus materials (mainly cellulose-based Janus materials, lignin-based Janus materials and protein-based Janus materials) and the methods used for their preparation. This work will not only deepen the understanding of biomass-based Janus materials, but also contribute to the development of new methods for designing biomass-based Janus structures to optimize biomass utilization.


Assuntos
Celulose , Nanopartículas Multifuncionais , Biomassa , Lignina/química , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA