Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Hepatol ; 75(4): 900-911, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34004215

RESUMO

BACKGROUND & AIMS: Contradictory roles of the androgen receptor (AR) in hepatocellular carcinoma (HCC) metastasis have been reported. We have shown that VETC (vessels encapsulating tumor clusters) mediates invasion-independent metastasis, whereas VETC- HCCs metastasize in an invasion-dependent manner. Herein, we aimed to reveal the roles of AR in HCC metastasis. METHODS: Mouse xenograft models, clinical samples, and cell models were used. RESULTS: AR expression was significantly lower in HCCs with a VETC pattern, portal vein tumor thrombus, endothelium-coated microemboli or high recurrence rates. Overexpressing AR in VETC+ hepatoma cells suppressed VETC formation and intrahepatic metastasis but promoted pulmonary metastasis of mouse xenografts. AR decreased the transcription of Angiopoietin-2 (Angpt2), a factor essential for VETC formation, by binding to the Angpt2 promoter. The roles of AR in inhibiting VETC formation and intrahepatic metastasis were attenuated by restoring Angpt2 expression, suggesting that AR may repress VETC-dependent intrahepatic metastasis by inhibiting Angpt2 expression and VETC formation. On the other hand, AR upregulated Rac1 expression, promoted lamellipodia formation and increased cell migration/invasion. A Rac1 inhibitor abrogated the AR-mediated promotion of migration/invasion and pulmonary metastasis of VETC+ hepatoma cells, but did not affect the AR-mediated inhibition of intrahepatic metastasis. Furthermore, an AR inhibitor decreased Rac1 expression and attenuated both intrahepatic and pulmonary metastasis of VETC- xenografts, an effect which was abrogated by restoring Rac1 expression. These data indicate that AR may facilitate the lung metastasis of VETC+ HCCs and both the liver/lung metastases of VETC- HCCs by upregulating Rac1 expression and then promoting migration/invasion. CONCLUSION: AR plays dual and opposing roles in VETC-dependent and invasion-dependent metastasis, which highlights the complex functions of AR and the importance of individualized cancer therapy. LAY SUMMARY: In this study, we uncovered the dual and opposing roles of the androgen receptor in VETC (vessels encapsulating tumor clusters)-dependent and invasion-dependent metastasis of hepatocellular carcinoma (HCC). We elucidated the underlying mechanisms of these processes, which provided novel insights into the complex regulatory network of the androgen receptor in HCC metastasis and may have important implications for precision medicine.


Assuntos
Neoplasias Hepáticas/etiologia , Metástase Neoplásica/imunologia , Receptores Androgênicos/análise , Animais , Estudos de Coortes , Modelos Animais de Doenças , Neoplasias Hepáticas/fisiopatologia , Camundongos , Metástase Neoplásica/prevenção & controle
2.
Hepatology ; 70(3): 824-839, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30506570

RESUMO

Sorafenib is the most recommended first-line systemic therapy for advanced hepatocellular carcinoma (HCC). Yet there is no clinically applied biomarker for predicting sorafenib response. We have demonstrated that a vascular pattern, named VETC (Vessels that Encapsulate Tumor Clusters), facilitates the release of whole tumor clusters into the bloodstream; VETC-mediated metastasis relies on vascular pattern, but not on migration and invasion of cancer cells. In this study, we aimed to explore whether vascular pattern could predict sorafenib benefit. Two cohorts of patients were recruited from four academic hospitals. The survival benefit of sorafenib treatment for patients with or without the VETC pattern (VETC+ /VETC- ) was investigated. Kaplan-Meier analyses revealed that sorafenib treatment significantly reduced death risk and prolonged overall survival (OS; in cohort 1/2, P = 0.004/0.005; hazard ratio [HR] = 0.567/0.408) and postrecurrence survival (PRS; in cohort 1/2, P = 0.001/0.002; HR = 0.506/0.384) in VETC+ patients. However, sorafenib therapy was not beneficial for VETC- patients (OS in cohort 1/2, P = 0.204/0.549; HR = 0.761/1.221; PRS in cohort 1/2, P = 0.121/0.644; HR = 0.728/1.161). Univariate and multivariate analyses confirmed that sorafenib treatment significantly improved OS/PRS in VETC+ , but not VETC- , patients. Further mechanistic investigations showed that VETC+ and VETC- HCCs displayed similar levels of light chain 3 (LC3) and phosphorylated extracellular signal-regulated kinase (ERK) in tumor tissues (pERK) or endothelial cells (EC-pERK), and greater sorafenib benefit was consistently observed in VETC+ HCC patients than VETC- irrespective of levels of pERK/EC-pERK/LC3, suggesting that the different sorafenib benefit between VETC+ and VETC- HCCs may not result from activation of Raf/mitogen-activated protein kinase kinase (MEK)/ERK and vascular endothelial growth factor (VEGF)A/VEGF receptor 2 (VEGFR2)/ERK signaling or induction of autophagy. Conclusion: Sorafenib is effective in prolonging the survival of VETC+ , but not VETC- , patients. VETC pattern may act as a predictor of sorafenib benefit for HCC.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Sorafenibe/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Centros Médicos Acadêmicos , Análise de Variância , Antineoplásicos , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , China , Bases de Dados Factuais , Intervalo Livre de Doença , Feminino , Humanos , Infusões Intravenosas , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Masculino , Análise Multivariada , Invasividade Neoplásica/patologia , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Medição de Risco , Estatísticas não Paramétricas , Análise de Sobrevida , Resultado do Tratamento
3.
Hepatology ; 68(4): 1459-1475, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29637568

RESUMO

Increased vascular permeability facilitates metastasis. Emerging evidence indicates that secreted microRNAs (miRNAs) may mediate the crosstalk between cancer and stromal cells. To date, whether and how secreted miRNAs affect vascular permeability remains unclear. Based on deep sequencing and quantitative PCR, we found that higher level of serum miR-103 was associated with higher metastasis potential of hepatocellular carcinoma (HCC). The in vitro endothelial permeability and transendothelial invasion assays revealed that the conditioned media or exosomes derived from high miR-103-expressing hepatoma cells increased the permeability of endothelial monolayers, but this effect was attenuated if exosome secretion of hepatoma cells was blocked by silencing ALIX and HRS or if miR-103 within hepatoma or endothelial cells was antagonized. Most importantly, pretreating endothelial monolayers with exosomes that were from stable miR-103-expressing hepatoma cells facilitated the transendothelial invasion of tumor cells, and this role of exosomes was abrogated by inhibiting miR-103 in endothelial cells. Further in vivo analyses disclosed that mice with xenografts of stable miR-103-expressing hepatoma cells exhibited higher vascular permeability in tumor, higher level of exosomal miR-103 and greater number of tumor cells in blood circulation, and increased rates of hepatic and pulmonary metastases, compared to control mice. Mechanism investigations revealed that hepatoma cell-secreted miR-103 could be delivered into endothelial cells via exosomes, and then attenuated the endothelial junction integrity by directly inhibiting the expression of VE-Cadherin (VE-Cad), p120-catenin (p120) and zonula occludens 1. Moreover, miR-103 could also promote tumor cell migration by repressing p120 expression in hepatoma cells. CONCLUSION: Hepatoma cell-secreted exosomal miR-103 increases vascular permeability and promotes tumor metastasis by targeting multiple endothelial junction proteins, which highlights secreted miR-103 as a potential therapeutic target and a predictive marker for HCC metastasis. (Hepatology 2018).


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , Metástase Neoplásica/genética , Transporte Proteico/genética , Animais , Biópsia por Agulha , Permeabilidade Capilar/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Exossomos/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/patologia , Camundongos , Valores de Referência , Sensibilidade e Especificidade , Transdução de Sinais , Regulação para Cima
4.
J Pathol ; 240(4): 450-460, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27577856

RESUMO

We have previously shown that vessels that encapsulated tumour cluster (VETC), a prevalent vascular pattern in hepatocellular carcinoma (HCC), facilitates the entry of the whole tumour cluster into the bloodstream in an invasion-independent manner, and that angiopoietin 2 (Angpt2), the levels of which are increased in HCC cells, is essential for VETC formation. However, the mechanisms underlying VETC formation remains unclear. Herein, we characterized miR-125b and miR-100 as novel VETC suppressors by using human HCC specimens, and cell and animal models. We showed that reduced expression of either miR-125b or miR-100 in human HCC tissues was significantly associated with the presence of VETC, venous invasion of tumour cells, and the occurrence of endothelium-coated microemboli. To confirm the role of miR-125b and miR-100 in VETC formation and HCC metastasis, cell lines with stable miR-125b and miR-100 expression were established by using human VETC-2 cells and mouse Hepa1-6 cells, the hepatoma cells that developed xenografts with VETC patterns. Our results showed that expression of miR-125b or miR-100 in VETC-2 and Hepa1-6 cells dramatically reduced VETC formation in xenografts, and consequently inhibited in vivo metastasis, suggesting that miR-125b and miR-100 may attenuate metastasis by repressing VETC formation. Further investigation revealed that miR-125b directly suppressed the expression of Angpt2 by binding to its 3'-untranslated region, whereas miR-100 reduced the protein level of Angpt2 by targeting mechanistic target of rapamycin (MTOR) and blocking the MTOR-p70S6K signalling pathway. Moreover, the suppressive effect of miR-125b and miR-100 on VETC formation was abrogated by injecting Angpt2-expressing viruses into xenografts. Taken together, our findings imply that miR-125b and miR-100 negatively regulate Angpt2 expression through different mechanisms, in turn inhibit VETC formation, and consequently abrogate the VETC-dependent metastasis of hepatoma cells. This study uncovers new regulatory mechanisms of VETC formation, identifies novel functions of miR-125b and miR-100, and provides new targets for antimetastasis therapy of HCC. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/secundário , Neoplasias Hepáticas/genética , MicroRNAs/fisiologia , Angiopoietina-2/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Regulação para Baixo , Endotélio Vascular/patologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Xenoenxertos , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Proteínas de Neoplasias/metabolismo , Transplante de Neoplasias , Células Neoplásicas Circulantes/patologia , Células Tumorais Cultivadas
5.
Hepatology ; 62(2): 452-65, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25711742

RESUMO

UNLABELLED: Early metastasis is responsible for frequent relapse and high mortality of hepatocellular carcinoma (HCC), but its underlying mechanisms remain unclear. Epithelial-mesenchymal transition (EMT) has been considered a key event in metastasis. Based on histological examination of serial HCC sections and three-dimensional reconstruction, we found a novel and prevalent vascular pattern, vessels that encapsulated tumor clusters (VETC) and formed cobweb-like networks. The presence of VETC (VETC(+) ) predicted higher metastasis and recurrence rates of HCC. Using clinical samples and mouse xenograft models, we further showed that VETC was composed of functional vessels with blood perfusion and induced by tumor cells at the early stage of HCC. Subsequent investigations revealed that HCC cell-derived angiopoietin-2 was a prerequisite for VETC formation and that the VETC pattern was a critical factor promoting HCC metastasis as knockdown of angiopoietin-2 abolished this vascular pattern and consequently attenuated in vivo tumor metastasis. Interestingly, abrogation of EMT by knockdown of Snail or Slug significantly diminished in vivo metastasis of VETC(-) xenografts but did not affect that of VETC(+) ones, although silencing of Snail or Slug substantially reduced the in vitro migration of both VETC(+) and VETC(-) HCC cells. In contrast to human VETC(-) cases, EMT signatures were rarely observed in VETC(+) cases with metastatic potential. Further analysis revealed that VETC provided an efficient metastasis mode by facilitating the release of whole tumor clusters into the bloodstream. CONCLUSION: Our findings identify a novel metastasis mechanism that relies on vascular pattern but is independent of EMT, which may provide new targets for antimetastasis therapy and offer a basis for selecting patients who may benefit from certain molecularly targeted drugs.


Assuntos
Carcinoma Hepatocelular/patologia , Transição Epitelial-Mesenquimal/fisiologia , Neoplasias Hepáticas/patologia , Metástase Neoplásica/patologia , Células Neoplásicas Circulantes/patologia , Análise de Variância , Angiopoietina-2/metabolismo , Animais , Biópsia por Agulha , Carcinoma Hepatocelular/fisiopatologia , Distribuição de Qui-Quadrado , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Neoplasias Hepáticas/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Metástase Neoplásica/fisiopatologia , Neovascularização Patológica/patologia , Neovascularização Patológica/fisiopatologia , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real , Células Tumorais Cultivadas
6.
Oncotarget ; 7(29): 45702-45714, 2016 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-27329720

RESUMO

The seeding of tumor cells is a critical step in the process of metastasis, but whether and how the microenvironment of target organs affects metastatic seeding remain largely unknown. Based on cell and mouse models, we found that the metastatic seeding and outgrowth of tumor cells were significantly enhanced in fibrotic lungs. The conditioned medium from both fibrotic lungs and the fibrotic lung-derived fibroblasts (CM-FLF) had a strong activity to chemoattract tumor cells and to inhibit the apoptosis of tumor cells. Subsequent investigations revealed that the levels of fibronectin 1 (FN1) and secreted phosphoprotein 1 (SPP1) were significantly increased in fibrotic lungs. Silencing of FN1 in the fibrotic lung-derived fibroblasts dramatically decreased the chemoattracting activity of CM-FLF, while silencing of FN1 or SPP1 in fibroblasts attenuated the anti-apoptosis activity of CM-FLF. Moreover, the CM-FLF-induced apoptosis resistance or chemotaxis of tumor cells was attenuated when ITGAV, the common receptor of FN1 and SPP1, was silenced by RNA interference or blocked by GRGDS treatment in tumor cells. Consistently, ITGAV silencing or GRGDS treatment significantly inhibited the seeding and outgrowth of tumor cells in fibrotic lungs in vivo. Collectively, we suggest that fibrotic microenvironment may enhance the metastatic seeding of tumor cells in the lung by chemoattracting tumor cells and inhibiting their apoptosis via activating the FN1/SPP1-ITGAV signaling. These findings give a novel insight into the regulatory mechanisms of cancer metastasis and provide a potential target for anti-metastasis therapy.


Assuntos
Fibronectinas/metabolismo , Metástase Neoplásica/patologia , Osteopontina/metabolismo , Fibrose Pulmonar/patologia , Microambiente Tumoral/fisiologia , Animais , Apoptose/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/secundário , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA