Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 196: 463-471, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36758293

RESUMO

The problem of nitrogen (N) excess and magnesium (Mg) deficiency in farmland is becoming more common, severe, and widespread in southern China. Magnesium is known to be an essential nutrient for higher plants; however, the physiological responses of field crops to Mg deficiency, particularly to its interaction with N forms, remain largely unknown. In this study, a hydroponic experiment was conducted using three Mg levels (0.01, 1.00, and 5.00 mM) and three nitrate/ammonium ratios (NO3-/NH4+ of 0/100, 25/75, and 50/50) under greenhouse conditions. The results show that Mg deficiency (0.01 mM) could result in yellow leaves, dwarf plants, and fewer tillers during rice growth. Furthermore, Mg deficiency induced a major reduction in root morphology and activity, photosynthetic properties, and nutrient accumulation, while it resulted in a clear increase in malondialdehyde, superoxide dismutase, peroxidase, and catalase activities in rice. However, under Mg-deficiency stress, the supply of partial NO3- led to a significant drop in these antioxidant enzyme activities. Moreover, partial NO3- supply significantly improved the net photosynthetic rate, transpiration rate, stomatal conductance, and intercellular CO2 concentrations under Mg-deficiency conditions. In particular, the supply of partial NO3- dramatically promoted the growth of the root system, boosted the occurrence of lateral roots, and enhanced root vitality under Mg-deficiency stress. Additionally, the supply of partial NO3- led to significant increases in dry weight and N and Mg contents under Mg deficiency. The results of this study suggest that the symptoms of Mg-deficiency stress in rice can be alleviated by partial NO3- supply.


Assuntos
Deficiência de Magnésio , Oryza , Nitratos , Oryza/fisiologia , Magnésio , Nitrogênio/farmacologia , Antioxidantes , Raízes de Plantas
2.
Food Res Int ; 164: 112320, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737913

RESUMO

Late-season indica rice frequently encounters low temperature (LT) along with low light (LL) after heading in southern China, which deteriorates the grain quality by altering starch quality. However, the detailed effects on starch properties of these stressors remain unclear. Herein, two indica rice cultivars with good and poor grain quality were grown under control (CK), LT, and LT + LL conditions after heading and the structural and physicochemical properties of their starch were evaluated. Compared with CK, LT and LT + LL worsened thermal and pasting properties of starch in the two cultivars, mainly because they increased branch chain branching and A chain (DP ≤12), and decreased average branch chain length and crystallinity. Compared with LT, LT + LL deteriorated the pasting properties of the poor-quality cultivar, such as reducing breakdown (BD), final and peak viscosity, which mainly owing to decreasing the starch branching and crystallinity degrees, and increasing the small starch granules (d < 10 µm). Gelatinization enthalpy and BD both had significant and positive correlations with amylose content, the ratio of amylose and amylopectin, B3 chain and crystallinity. Taken together, these results suggest that LT and LT + LL during grain filling can deteriorate the physicochemical properties of starch in late-season indica rice cultivars by disrupting starch multilevel structure, especially upon LT + LL. In particular, while poor-quality cultivar had poorer physicochemical properties, the good-quality cultivar had poorer thermal properties under LT + LL.


Assuntos
Oryza , Amido , Amido/química , Amilose/análise , Oryza/química , Temperatura , Estações do Ano , Grão Comestível/química , China
3.
Carbohydr Polym ; 295: 119882, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35988987

RESUMO

Nitrogen management, especially panicle nitrogen fertilization (PNF), can affect cooked rice textures by altering starch quality, but the details are unclear. In this study, the starch multi-level structures, physicochemical properties and cooked rice textures of indica under different nitrogen managements were analysed and their internal relations were investigated. With an increase in PNF, large granules, amylopectin short chains, amylose content, thermal temperatures, setback, and hardness first exhibited decreasing trends and then increasing trends, which were relatively lower under moderate PNF (N3), whereas α-1,6 linkage, relative crystallinity, protein content, enthalpy of gelatinization (△Hgel), peak viscosity, breakdown and stickiness exhibited the opposite trends. N3 treatment significantly increased △Hgel and breakdown and decreased setback, hardness and chewiness, suggesting that it might contribute to better starch thermal stability and pasting properties, ultimately improving cooked rice texture. Nitrogen management affected the texture of cooked rice mainly by improving starch multi-level structures, thermal and pasting viscosities.


Assuntos
Oryza , Amido , Amilopectina/química , Amilose/química , Nitrogênio/metabolismo , Oryza/química , Amido/química , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA