Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 145: 216-231, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38844321

RESUMO

Catalytic ozonation is an effective wastewater purification process. However, the low ozone mass transfer in packed bubble columns leads to low ozone utilization efficiency (OUE), poor organic degradation performance, and high energy consumption. Therefore, there is an urgent need to develop efficient supported catalysts that can enhance mass transfer and performance. However, the reaction mechanism of the support on ozone mass transfer remains unclear, which hinders the development of catalytic ozonation applications. In this study, lava rocks (LR)-supported catalysts, specifically CuMn2O4@LR and MnO2Co3O4@LR, were proposed for catalytic ozonation of IBP degradation due to their superior catalytic activity, stability, and high OUE. Addition of CuMn2O4@LR or MnO2Co3O4@LR increased IBP removal efficiency from 85% to 91% or 88%, and reduced energy consumption from 2.86 to 2.14 kWh/m3 or 2.60 kWh/m3, respectively. This improvement was attributed to LR-supported catalysts enhancing mass transfer and promoting O3 decomposition to generate •OH and •O2-, leading to IBP degradation. Furthermore, this study investigated the effects of ozone dose, supporter sizes, and catalyst components on ozone-liquid mass transfer. The results revealed that the size of the supporter influenced stacked porosity and consequently affected ozone mass transfer. Larger-sized LR (kLa= 0.172 min-1) exhibited better mass transfer compared to smaller-sized supports. Based on these findings, it was concluded that both CuMn2O4@LR and MnO2Co3O4@LR are potential catalysts for catalytic ozonation in residual IBP degradation of pharmaceutical wastewater, and LR showed good credibility as a catalyst supporter. Understanding the effects of supporters and active components on ozone mass transfer provides a fundamental principle for designing supported catalysts in catalytic ozonation applications.


Assuntos
Ibuprofeno , Ozônio , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Ozônio/química , Catálise , Poluentes Químicos da Água/química , Ibuprofeno/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Purificação da Água/métodos
2.
Adv Mater ; 29(3)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27786377

RESUMO

A novel CO2 -driven ionic gate, mimicking the function of olfactory sensory neurons of mosquitoes, is successfully developed by functionalizing the walls of the nanochannels using 1-(4-amino-phenyl)-2,2,2-trifluoro-ethanone. This artificial nanochannel can switch between the ON-state and OFF-state in the presence and absence of CO2 , with an ultrahigh gating ratio of up to 1250, and has potential applications in CO2 -related sensing, gating, and nanofluidic systems.


Assuntos
Dióxido de Carbono/química , Animais , Culicidae , Íons , Neurônios Receptores Olfatórios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA