Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Transgenic Res ; 23(3): 503-17, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24504635

RESUMO

C4 grasses are favoured as forage crops in warm, humid climates. The use of C4 grasses in pastures is expected to increase because the tropical belt is widening due to global climate change. While the forage quality of Paspalum dilatatum (dallisgrass) is higher than that of other C4 forage grass species, digestibility of warm-season grasses is, in general, poor compared with most temperate grasses. The presence of thick-walled parenchyma bundle-sheath cells around the vascular bundles found in the C4 forage grasses are associated with the deposition of lignin polymers in cell walls. High lignin content correlates negatively with digestibility, which is further reduced by a high ratio of syringyl (S) to guaiacyl (G) lignin subunits. Cinnamoyl-CoA reductase (CCR) catalyses the conversion of cinnamoyl CoA to cinnemaldehyde in the monolignol biosynthetic pathway and is considered to be the first step in the lignin-specific branch of the phenylpropanoid pathway. We have isolated three putative CCR1 cDNAs from P. dilatatum and demonstrated that their spatio-temporal expression pattern correlates with the developmental profile of lignin deposition. Further, transgenic P. dilatatum plants were produced in which a sense-suppression gene cassette, delivered free of vector backbone and integrated separately to the selectable marker, reduced CCR1 transcript levels. This resulted in the reduction of lignin, largely attributable to a decrease in G lignin.


Assuntos
Aldeído Oxirredutases/biossíntese , Lignina/metabolismo , Paspalum/genética , Plantas Geneticamente Modificadas/genética , Aldeído Oxirredutases/genética , Mudança Climática , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas , Lignina/genética , Paspalum/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Estações do Ano
2.
New Phytol ; 189(2): 602-15, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21039563

RESUMO

Pigment stripes associated with veins (venation) is a common flower colour pattern. The molecular genetics and function of venation were investigated in the genus Antirrhinum, in which venation is determined by Venosa (encoding an R2R3MYB transcription factor). Pollinator preferences were measured by field tests with Antirrhinum majus. Venosa function was examined using in situ hybridization and transient overexpression. The origin of the venation trait was examined by molecular phylogenetics. Venation and full-red flower colouration provide a comparable level of advantage for pollinator attraction relative to palely pigmented or white lines. Ectopic expression of Venosa confers pigmentation outside the veins. Venosa transcript is produced only in small areas of the corolla between the veins and the adaxial epidermis. Phylogenetic analyses suggest that venation patterning is an ancestral trait in Antirrhinum. Different accessions of three species with full-red pigmentation with or without venation patterning have been found. Epidermal-specific venation is defined through overlapping expression domains of the MYB (myoblastoma) and bHLH (basic Helix-Loop-Helix) co-regulators of anthocyanin biosynthesis, with the bHLH providing epidermal specificity and Venosa vein specificity. Venation may be the ancestral trait, with full-red pigmentation a derived, polyphyletic trait. Venation patterning is probably not fixed once species evolve full-red floral pigmentation.


Assuntos
Antirrhinum/genética , Flores/genética , Pigmentação/genética , Polinização/fisiologia , Alelos , Animais , Antocianinas/metabolismo , Antirrhinum/citologia , Antirrhinum/parasitologia , Sequência de Bases , Comportamento Alimentar/fisiologia , Flores/citologia , Flores/parasitologia , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Hibridização In Situ , Insetos/fisiologia , Dados de Sequência Molecular , Fenótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidade da Espécie
3.
Plant Methods ; 3: 1, 2007 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-17207290

RESUMO

BACKGROUND: There is considerable interest in rapid assays or screening systems for assigning gene function. However, analysis of gene function in the flowers of some species is restricted due to the difficulty of producing stably transformed transgenic plants. As a result, experimental approaches based on transient gene expression assays are frequently used. Biolistics has long been used for transient over-expression of genes of interest, but has not been exploited for gene silencing studies. Agrobacterium-infiltration has also been used, but the focus primarily has been on the transient transformation of leaf tissue. RESULTS: Two constructs, one expressing an inverted repeat of the Antirrhinum majus (Antirrhinum) chalcone synthase gene (CHS) and the other an inverted repeat of the Antirrhinum transcription factor gene Rosea1, were shown to effectively induce CHS and Rosea1 gene silencing, respectively, when introduced biolistically into petal tissue of Antirrhinum flowers developing in vitro. A high-throughput vector expressing the Antirrhinum CHS gene attached to an inverted repeat of the nos terminator was also shown to be effective. Silencing spread systemically to create large zones of petal tissue lacking pigmentation, with transmission of the silenced state spreading both laterally within the affected epidermal cell layer and into lower cell layers, including the epidermis of the other petal surface. Transient Agrobacterium-mediated transformation of petal tissue of tobacco and petunia flowers in situ or detached was also achieved, using expression of the reporter genes GUS and GFP to visualise transgene expression. CONCLUSION: We demonstrate the feasibility of using biolistics-based transient RNAi, and transient transformation of petal tissue via Agrobacterium infiltration to study gene function in petals. We have also produced a vector for high throughput gene silencing studies, incorporating the option of using T-A cloning to insert the gene sequence of interest. These techniques should allow analysis of gene function in a much broader range of flower species.

4.
Plant Cell ; 18(4): 831-51, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16531495

RESUMO

The Rosea1, Rosea2, and Venosa genes encode MYB-related transcription factors active in the flowers of Antirrhinum majus. Analysis of mutant phenotypes shows that these genes control the intensity and pattern of magenta anthocyanin pigmentation in flowers. Despite the structural similarity of these regulatory proteins, they influence the expression of target genes encoding the enzymes of anthocyanin biosynthesis with different specificities. Consequently, they are not equivalent biochemically in their activities. Different species of the genus Antirrhinum, native to Spain and Portugal, show striking differences in their patterns and intensities of floral pigmentation. Differences in anthocyanin pigmentation between at least six species are attributable to variations in the activity of the Rosea and Venosa loci. Set in the context of our understanding of the regulation of anthocyanin production in other genera, the activity of MYB-related genes is probably a primary cause of natural variation in anthocyanin pigmentation in plants.


Assuntos
Antirrhinum/fisiologia , Genes myb , Pigmentação/genética , Antocianinas/genética , Antirrhinum/classificação , Antirrhinum/genética , Flores/anatomia & histologia , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Fenótipo , Filogenia , Portugal , Espanha , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA