Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Toxicol ; 39(4): 2439-2451, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38205899

RESUMO

Head-and-neck squamous cell carcinoma (HNSCC) patients often exhibit insensitivity to immunotherapy, leading to treatment failure. Identifying potential biomarkers that can predict prognosis and improve the efficacy of treatment is crucial. In this study, we aimed to identify necroptosis-related long noncoding RNAs (NRlncRNAs) as potential therapeutic targets to improve the prognosis of HNSCC patients. By exploring the Genotype-Tissue Expression Project (GTEx) and the Cancer Genome Atlas (TCGA) databases, we identified NRlncRNAs and developed a risk model comprising 17 NRlncRNAs to predict the prognosis of HNSCC patients and to classify patients into two clusters based on their expression levels. We conducted various analyses, such as the Kaplan-Meier analysis, GSEA and IC50 prediction, to evaluate the differences in sensitivity to immunotherapy between the two clusters. Our findings suggest that NRlncRNAs have potential as therapeutic targets for improving the prognosis of HNSCC patients, and that individualized treatment approaches based on NRlncRNA expression levels can improve the sensitivity of immunotherapy and overall treatment outcomes. This study highlights new perspectives within clinical cancer informatics and provides insight into potential therapeutic strategies for HNSCC patients.


Assuntos
Neoplasias de Cabeça e Pescoço , RNA Longo não Codificante , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Prognóstico , RNA Longo não Codificante/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/terapia , Aprendizado de Máquina , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica
2.
Nanomicro Lett ; 16(1): 221, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884840

RESUMO

Considering the serious electromagnetic wave (EMW) pollution problems and complex application condition, there is a pressing need to amalgamate multiple functionalities within a single substance. However, the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges. Herein, reduced graphene oxide/carbon foams (RGO/CFs) with two-dimensional/three-dimensional (2D/3D) van der Waals (vdWs) heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying, immersing absorption, secondary freeze-drying, followed by carbonization treatment. Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching, the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances, achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of - 50.58 dB with the low matching thicknesses. Furthermore, the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties, good corrosion resistance performances as well as outstanding thermal insulation capabilities, displaying the great potential in complex and variable environments. Accordingly, this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures, but also outlined a powerful mixed-dimensional assembly strategy for engineering multifunctional foams for electromagnetic protection, aerospace and other complex conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA