Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Metabolomics ; 20(4): 76, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002042

RESUMO

BACKGROUND: Aortic dissection (AD) significantly threated human cardiovascular health, extensive clinical-scientific research programs have been executed to uncover the pathogenesis and prevention. Unfortunately, no specific biomarker was identified for the causality or development of human AD. AIM OF REVIEW: Metabolomics, a high-throughput technique capable of quantitatively detecting metabolites, holds considerable promise in discovering specific biomarkers and unraveling the underlying pathways involved. Aiming to provide a metabolite prediction in human AD, we collected the metabolomics data from 2003 to 2023, and diligently scrutinized with the online system MetaboAnalyst 6.0. KEY SCIENTIFIC CONCEPTS OF REVIEW: Based on the data obtained, we have concluded the metabolic dynamics were highly correlated with human AD. Such metabolites (choline, serine and uridine) were frequently involved in the AD. Besides, the pathways, including amino acids metabolism and lipids metabolism, were also dysregulated in the disease. Due to the current limitation of metabolism analysis, the integrative omics data including genomics, transcriptomics, and proteomics were required for developing the specific biomarker for AD.


Assuntos
Dissecção Aórtica , Biomarcadores , Metabolômica , Humanos , Biomarcadores/metabolismo , Dissecção Aórtica/metabolismo , Dissecção Aórtica/diagnóstico , Metabolômica/métodos , Metaboloma
2.
J Cell Mol Med ; 25(17): 8103-8114, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34378345

RESUMO

Transplantation of stem cells is a promising, emerging treatment for cardiovascular diseases in the modern era. Mesenchymal stem cells (MSCs) derived from the umbilical cord are one of the most promising cell sources because of their capacity for differentiation into cardiomyocytes, endothelial cells and vascular smooth muscle cells in vitro/in vivo. In addition, umbilical cord-derived MSCs (UC-MSCs) secrete many effective molecules regulating apoptosis, fibrosis and neovascularization. Another important and specific characteristic of UC-MSCs is their low immunogenicity and immunomodulatory properties. However, the application of UC-MSCs still faces some challenges, such as low survivability and tissue retention in a harmful disease environment. Gene engineering and pharmacological studies have been implemented to overcome these difficulties. In this review, we summarize the differentiation ability, secretion function, immunoregulatory properties and preclinical/clinical studies of UC-MSCs, highlighting the advantages of UC-MSCs for the treatment of cardiovascular diseases.


Assuntos
Doenças Cardiovasculares/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais , Cordão Umbilical , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/citologia , Cordão Umbilical/citologia , Cordão Umbilical/metabolismo
3.
Cell Mol Life Sci ; 77(5): 937-952, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31312880

RESUMO

BACKGROUND AND AIMS: Allogeneic human umbilical mesenchymal stem cells (alloUMSC) are convenient cell source for stem cell-based therapy. However, immune rejection is a major obstacle for clinical application of alloUMSC for cardiac repair after myocardial infarction (MI). The immune rejection is due to the presence of human leukocyte antigen (HLA) class I molecule which is increased during MI. The aim of this study was to knockout HLA light chain ß2-microglobulin (B2M) in UMSC to enhance stem cell engraftment and survival after transplantation. METHODS AND RESULTS: We developed an innovative strategy using CRISPR/Cas9 to generate UMSC with B2M deletion (B2M-UMSC). AlloUMSC injection induced CD8+ T cell-mediated immune rejection in immune competent rats, whereas no CD8+ T cell-mediated killing against B2M-UMSC was observed even when the cells were treated with IFN-γ. Moreover, we demonstrate that UMSC-derived exosomes can inhibit cardiac fibrosis and restore cardiac function, and exosomes derived from B2M-UMSC are more efficient than those derived from UMSC, indicating that the beneficial effect of exosomes can be enhanced by modulating exosome's imprinting. Mechanistically, microRNA sequencing identifies miR-24 as a major component of the exosomes from B2M-UMSCs. Bioinformatics analysis identifies Bim as a putative target of miR-24. Loss-of-function studies at the cellular level and gain-of-function approaches in exosomes show that the beneficial effects of B2M-UMSCs are mediated by the exosome/miR-24/Bim pathway. CONCLUSION: Our findings demonstrate that modulation of exosome's imprinting via B2M knockout is an efficient strategy to prevent the immune rejection of alloUMSCs. This study paved the way to the development of new strategies for tissue repair and regeneration without the need for HLA matching.


Assuntos
Sistemas CRISPR-Cas/genética , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/imunologia , Infarto do Miocárdio/terapia , Microglobulina beta-2/genética , Animais , Proteína 11 Semelhante a Bcl-2/metabolismo , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Exossomos/metabolismo , Fibrose/prevenção & controle , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/transplante , Humanos , Interferon gama/farmacologia , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , Ratos , Microglobulina beta-2/metabolismo
4.
J Cell Mol Med ; 24(1): 695-710, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31729180

RESUMO

Generating universal human umbilical mesenchymal stem cells (UMSCs) without immune rejection is desirable for clinical application. Here we developed an innovative strategy using CRISPR/Cas9 to generate B2M- UMSCs in which human leucocyte antigen (HLA) light chain ß2-microglobulin (B2M) was deleted. The therapeutic potential of B2M- UMSCs was examined in a mouse ischaemic hindlimb model. We show that B2M- UMSCs facilitated perfusion recovery and enhanced running capability, without inducing immune rejection. The beneficial effect was mediated by exosomes. Mechanistically, microRNA (miR) sequencing identified miR-24 as a major component of the exosomes originating from B2M- UMSCs. We identified Bim as a potential target of miR-24 through bioinformatics analysis, which was further confirmed by loss-of-function and gain-of-function approaches. Taken together, our data revealed that knockout of B2M is a convenient and efficient strategy to prevent UMSCs-induced immune rejection, and it provides a universal clinical-scale cell source for tissue repair and regeneration without the need for HLA matching in the future.


Assuntos
Proteína 11 Semelhante a Bcl-2/metabolismo , Exossomos/metabolismo , Membro Posterior/citologia , Isquemia/prevenção & controle , MicroRNAs/genética , Transplante de Células-Tronco/efeitos adversos , Microglobulina beta-2/fisiologia , Animais , Proteína 11 Semelhante a Bcl-2/genética , Exossomos/genética , Membro Posterior/imunologia , Membro Posterior/lesões , Membro Posterior/metabolismo , Humanos , Isquemia/etiologia , Isquemia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/administração & dosagem , Células-Tronco/metabolismo , Células-Tronco/patologia , Cordão Umbilical/metabolismo , Cordão Umbilical/patologia
5.
Adv Exp Med Biol ; 998: 187-206, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28936741

RESUMO

Cardiovascular diseases resulting from ischemic heart diseases remain to be the main causes of heart failure and death despite significant advances in medical treatment. The development of new therapies for heart failure is thus required to improve the outcome in these patients, and this has led to the development of cell-based therapies. Animal studies showed interesting results using various cell types. Some stem cell based therapies have been tested in clinical trials. Although the results were encouraging, challenges remain. Tumorigenic potential, immune rejection, and low engraftment and survival rate of transplant cells have hindered the widespread application of stem cells in the clinic. Fortunately, exosome based therapy could avoid these problems associated with cell therapy. Future research should focus on how various molecules are sorted into exosomes and this information will help to design better exosomes for treatment of cardiovascular diseases. Recent studies suggest that exosome content can vary depending on how cells are challenged. It would be important to find out exactly what types of cellular stress is needed for producing most useful exosomes. Alternatively, specific molecules can be introduced into exosomes by genetic engineering in order to treat specific conditions and to improve efficacy.


Assuntos
Doenças Cardiovasculares/cirurgia , Células-Tronco Embrionárias/transplante , Exossomos/transplante , Miocárdio/patologia , Miócitos Cardíacos/transplante , Regeneração , Transplante de Células-Tronco , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Células-Tronco Embrionárias/metabolismo , Exossomos/genética , Exossomos/metabolismo , Exossomos/patologia , Regulação da Expressão Gênica , Humanos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Recuperação de Função Fisiológica , Transdução de Sinais , Transplante de Células-Tronco/efeitos adversos
6.
ACS Biomater Sci Eng ; 10(5): 3232-3241, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38556725

RESUMO

Myocardial infarction (MI) is associated with inflammatory reaction, which is a pivotal component in MI pathogenesis. Moreover, excessive inflammation post-MI can lead to cardiac dysfunction and adverse remodeling, emphasizing the critical need for an effective inflammation-regulating treatment for cardiac repair. Macrophage polarization is crucial in the inflammation process, indicating its potential as an adjunct therapy for MI. In this study, we developed an injectable alginate hydrogel loaded with annexin A1 (AnxA1, an endogenous anti-inflammatory and pro-resolving mediator) for MI treatment. In vitro results showed that the composite hydrogel had good biocompatibility and consistently released AnxA1 for several days. Additionally, this hydrogel led to a reduced number of pro-inflammatory macrophages and an increased proportion of pro-healing macrophages via the adenosine monophosphate (AMP)-activated protein kinase (AMPK)-mammalian target of the rapamycin (mTOR) axis. Furthermore, the intramyocardial injection of this composite hydrogel into a mouse MI model effectively modulated macrophage transition to pro-healing phenotypes. This transition mitigated early inflammatory responses and cardiac fibrosis, promoted angiogenesis, and improved cardiac function. Therefore, our study findings suggest that combining biomaterials and endogenous proteins for MI treatment is a promising approach for limiting adverse cardiac remodeling, preventing cardiac damage, and preserving the function of infarcted hearts.


Assuntos
Alginatos , Anexina A1 , Hidrogéis , Macrófagos , Infarto do Miocárdio , Animais , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Alginatos/química , Alginatos/farmacologia , Anexina A1/metabolismo , Anexina A1/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Masculino , Fenótipo , Células RAW 264.7 , Proteínas Quinases Ativadas por AMP/metabolismo
7.
Curr Probl Cardiol ; 49(1 Pt A): 102040, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37595858

RESUMO

Aortic aneurysm and dissection are complicated diseases having both high prevalence and mortality. It is usually diagnosed at advanced stages and posing diagnostic and therapeutic challenges due to the limitations of current detecting methods for aortic dissection used in clinics. Metabonomics demonstrated its great potential capability in the early diagnosis and personalized treatment of several diseases. Emerging evidence suggests that metabolic disorders including amino acid metabolism, glycometabolism, and lipid metabolism disturbance are involved in the pathogenesis of aortic aneurysm and dissection by affecting multiple functional aortic cells. The purpose of this review is to provide new insights into the metabolism alterations and their related regulatory mechanisms with a focus on recent advances and findings and provide a theoretical basis for the diagnosis, prevention, and drug development for aortic aneurysm and dissection.


Assuntos
Aneurisma Aórtico , Dissecção Aórtica , Humanos , Aneurisma Aórtico/terapia , Aneurisma Aórtico/complicações , Dissecção Aórtica/diagnóstico , Dissecção Aórtica/epidemiologia , Dissecção Aórtica/etiologia
8.
Front Cardiovasc Med ; 11: 1441123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39257845

RESUMO

Background: Thoracic Aortic Dissection (TAD) is a life-threatening disease without effective drug treatments. The disruption of HASMCs homeostasis is one direct histopathologic alteration in TAD pathological process. Several miRNAs have been shown abnormally expressed in TAD and to regulate HASMCs homeostasis. The primary goal of this study is to identify the miRNAs and the specific mechanisms that lead to HASMCs homeostasis disruption. Methods: Bulk miRNA sequencing was performed to explore the aberrantly expressed miRNA profile in TAD, and differentially expressed miRNAs were verified with qRT-PCR. To explore the role of the key miRNAs (miR-3529) in HASMCs homeostasis, we overexpressed this miRNA with lentivirus in HASMCs. Integrative transcriptomics and metabolomics analysis were used to uncover the functional roles of this miRNA in regulating HASMCs homeostasis. Further, the target gene of miR-3529 was predicted by bioinformatics and verified through a dual-luciferase reporter assay. Results: Bulk miRNA sequencing showed miR-3529 was elevated in TAD tissues and confirmed by qRT-PCR. Further experimental assay revealed miR-3529 upregulation induced HASMCs homeostasis disruption, accompanied by reducing contractile markers and increasing pro-inflammatory cytokines. Integrative transcriptomics and metabolomics analysis showed that miR-3529 overexpression altered the metabolic profile of HASMC, particularly lipid metabolism. ABCA1 was found to be a direct target of miR-3529. Mechanistically, the miR-3529/ABCA1 axis disrupted HASMCs homeostasis through the JAK2/STAT3 signaling pathway. Conclusions: miR-3529 is elevated in TAD patients and disrupts HASMCs homeostasis by reprogramming metabolism through the JAK2/STAT3 signaling pathway. These findings favor a role for miR-3529 as a novel target for TAD therapy.

9.
Adv Healthc Mater ; 12(13): e2202959, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36739582

RESUMO

Myocardial infarction (MI) is a cardiovascular disease that poses a serious threat to human health. Uncontrolled and excessive cardiac fibrosis after MI has been recognized as a primary contributor to mortality by heart failure. Thus, prevention of fibrosis or alleviation of fibrosis progression is important for cardiac repair. To this end, a biocompatible microneedle (MN) patch based on gelatin is fabricated to load exosomes containing microRNA-29b (miR-29b) mimics with antifibrotic activity to prevent excessive cardiac fibrosis after MI. Exosomes are isolated from human umbilical cord mesenchymal stem cells and loaded with miR-29b mimics via electroporation, which can be internalized effectively in cardiac fibroblasts to upregulate the expression of miR-29b and downregulate the expression of fibrosis-related proteins. After being implanted in the infarcted heart of a mouse MI model, the MN patch can increase the retention of loaded exosomes in the infarcted myocardium, leading to alleviation of inflammation, reduction of the infarct size, inhibition of fibrosis, and improvement of cardiac function. This design explored the MN patch as a suitable platform to deliver exosomes containing antifibrotic biomolecules locally for the prevention of cardiac fibrosis, showing the potential for MI treatment in clinical applications.


Assuntos
Exossomos , Fibrose , MicroRNAs , Infarto do Miocárdio , Fibrose/prevenção & controle , Infarto do Miocárdio/complicações , Modelos Animais de Doenças , MicroRNAs/uso terapêutico , Humanos , Animais , Camundongos , Eletroporação/métodos , Células-Tronco Mesenquimais , Células Endoteliais da Veia Umbilical Humana
10.
Bioeng Transl Med ; 8(3): e10471, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206202

RESUMO

Mesenchymal stromal/stem cells (MSCs) have emerged as a promising approach against myocardial infarction. Due to hostile hyperinflammation, however, poor retention of transplanted cells seriously impedes their clinical applications. Proinflammatory M1 macrophages, which rely on glycolysis as their main energy source, aggravate hyperinflammatory response and cardiac injury in ischemic region. Here, we showed that the administration of an inhibitor of glycolysis, 2-deoxy-d-glucose (2-DG), blocked the hyperinflammatory response within the ischemic myocardium and subsequently extended effective retention of transplanted MSCs. Mechanistically, 2-DG blocked the proinflammatory polarization of macrophages and suppressed the production of inflammatory cytokines. Selective macrophage depletion abrogated this curative effect. Finally, to avoid potential organ toxicity caused by systemic inhibition of glycolysis, we developed a novel chitosan/gelatin-based 2-DG patch that directly adhered to the infarcted region and facilitated MSC-mediated cardiac healing with undetectable side effects. This study pioneered the application of an immunometabolic patch in MSC-based therapy and provided insights into the therapeutic mechanism and advantages of this innovative biomaterial.

11.
Cell Transplant ; 32: 9636897231152381, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36786355

RESUMO

Bone marrow stem cell (BMSC) transplantation during coronary artery bypass graft (CABG) is an innovative treatment for ischemic heart disease (IHD). We conduct a meta-analysis to examine whether patients with IHD presenting heart failure with reduced ejection fraction (HFrEF) can be beneficent from CABG with additional BMSC transplantation. Electronic searches were performed on PubMed, EMBASE, Cochrane Library, and ClinicalTrials.gov from their inception to July 2021. The efficacy was based on left ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter (LVEDD), left ventricular end-diastolic volume (LVEDV), left ventricular end-diastolic volume index (LVEDVi), left ventricular end-systolic volume index (LVESVi), and 6-min walk test (6MWT) change after treatment. Eight randomized-controlled trials (RCTs) were included in this meta-analysis, with a total of 350 patients. Results showed BMSC transplantation significantly improved the LVEF [mean difference (MD) = 6.23%, 95% confidence interval (CI): 3.22%-9.24%, P < 0.0001], LVEDVi (MD = -20.15 ml/m2, 95% CI: -30.49 to -9.82 ml/m2, P < 0.00001), and LVESVi (MD = -17.69 ml/m2, 95% CI: -25.24 to -10.14 ml/m2, P < 0.00001). There was no statistically significant difference in the improvement of LVEDD, LVEDV, and 6MWT between the cell transplantation group and control groups. Subgroup analysis revealed that the intervention for control group could affect the efficacy of BMSC transplantation. Sensitivity analysis found the conclusion of LVEDD, LVEDV, and 6MWT changes was not stable. Therefore, among patients with IHD presenting HFrEF, BMSC transplantation during CABG is promising to be beneficial for postoperative left ventricular (LV) function improvement. However, according to the unstable results of the sensitivity analysis, it cannot be concluded whether the extra step has a positive effect on left ventricular remodeling and exercise capacity. RCTs with larger cohorts and more strict protocols are needed to validate these conclusions.


Assuntos
Insuficiência Cardíaca , Isquemia Miocárdica , Disfunção Ventricular Esquerda , Humanos , Medula Óssea , Ponte de Artéria Coronária/métodos , Função Ventricular Esquerda , Volume Sistólico , Disfunção Ventricular Esquerda/terapia , Insuficiência Cardíaca/cirurgia , Transplante de Medula Óssea/métodos , Resultado do Tratamento
12.
Stem Cells Int ; 2023: 1662182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-39280589

RESUMO

Objective: Myocardial infarction is a leading cause of mortality worldwide. Angiogenesis in the infarct border zone is vital for heart function restoration after myocardial infarction. Hypoxia-induced MSC modification is a safe and effective approach for angiogenesis in clinical therapy; however, the mechanism still requires further investigation. In our study, we preconditioned human umbilical cord mesenchymal stem cells (huMSCs) with hypoxia and isolated the small extracellular vesicles (sEVs) to promote cardiac repair. We also investigated the potential mechanisms. Method: huMSCs were preconditioned with hypoxia (1% O2 and 5% CO2 at 37°C for 48 hours), and their sEVs were isolated using the Total Exosome Isolation reagent kit. To explore the role of miR-214 in MSC-derived sEVs, sEVs with low miR-214 expression were prepared by transfecting miR-214 inhibitor into huMSCs before hypoxia pretreatment. Scratch assays and tube formation assays were performed in sEVs cocultured with HUVECs to assess the proangiogenic capability of MSC-sEVs and MSChyp-sEVs. Rat myocardial infarction models were used to investigate the ability of miR-214-differentially expressed sEVs in cardiac repair. Echocardiography, Masson's staining, and immunohistochemical staining for CD31 were performed to assess cardiac function, the ratio of myocardial fibrosis, and the capillary density after sEV implantation. The potential mechanism by which MSChyp-sEVs enhance angiogenesis was explored in vitro by RT-qPCR and western blotting. Results: Tube formation and scratch assays demonstrated that the proangiogenic capability of huMSC-derived sEVs was enhanced by hypoxia pretreatment. Echocardiography and Masson's staining showed greater improvements in heart function and less ventricular remodeling after MSChyp-sEV transplantation. The angiogenic capability was reduced following miR-214 knockdown in MSChyp-sEVs. Furthermore, Sufu, a target of miR-214, was decreased, and hedgehog signaling was activated in HUVECs. Conclusion: We found that hypoxia induced miR-214 expression both in huMSCs and their sEVs. Transplantation of MSChyp-sEVs into a myocardial infarction model improved cardiac repair by increasing angiogenesis. Mechanistically, MSChyp-sEVs promote HUVEC tube formation and migration by transferring miR-214 into recipient cells, inhibiting Sufu expression, and activating the hedgehog pathway. Hypoxia-induced vesicle modification is a feasible way to restore heart function after myocardial infarction.

13.
Stem Cell Res ; 61: 102753, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35305471

RESUMO

Thoracic aortic dissection is a devastating cardiovascular disease with an increasing annual incidence. The homozygous mutation in rs1801133 site has been accepted for decreased enzyme activity of mutant MTHFR protein, contributing to an accumulated homocysteine in blood. Recently, elevated homocysteine level is causally associated with an increased risk of cardiovascular disease. Conversely, the relationship between rs1801133 and thoracic aortic dissection is poorly understood. Here, the generated human induced pluripotent stem cell (iPSC) line provided a novel strategy for investigating the underlying mechanism of MTHFR mutation (rs1801133, TT) and its implication in the pathogenesis of thoracic aortic dissection.


Assuntos
Dissecção Aórtica , Células-Tronco Pluripotentes Induzidas , Dissecção Aórtica/genética , Estudos de Casos e Controles , Homocisteína , Humanos , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Mutação
14.
Cell Death Discov ; 8(1): 452, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36351896

RESUMO

Inflammation plays crucial roles in the regulation of pathophysiological processes involved in injury, repair and remodeling of the infarcted heart; hence, it has become a promising target to improve the prognosis of myocardial infarction (MI). Mesenchymal stem cells (MSCs) serve as an effective and innovative treatment option for cardiac repair owing to their paracrine effects and immunomodulatory functions. In fact, transplanted MSCs have been shown to accumulate at injury sites of heart, exerting multiple effects including immunomodulation, regulating macrophages polarization, modulating the activation of T cells, NK cells and dendritic cells and alleviating pyroptosis of non-immune cells. Many studies also proved that preconditioning of MSCs can enhance their inflammation-regulatory effects. In this review, we provide an overview on the current understanding of the mechanisms on MSCs and their secretome regulating inflammation and immune cells after myocardial infarction and shed light on the applications of MSCs in the treatment of cardiac infarction.

15.
Stem Cell Res ; 65: 102942, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36257094

RESUMO

BMP10 signaling has been implicated in regulation of cardiovascular cell fate determination and diseases, while the underlying molecular mechanism still remains uncertain. Here, the human embryonic stem cell line (H7-BMP10del) with homozygous deletion of BMP10 was generated by CRISPR/Cas9 method. Thus, the crosstalk related to BMP10 signaling could be investigated in cell fate determination and the molecular pathogenesis of cardiovascular disease.


Assuntos
Sistemas CRISPR-Cas , Células-Tronco Embrionárias Humanas , Humanos , Proteínas Morfogenéticas Ósseas , Sistemas CRISPR-Cas/genética , Homozigoto , Deleção de Sequência , Linhagem Celular
16.
Int J Stem Cells ; 15(2): 136-143, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34711694

RESUMO

Background and Objectives: Circulating endothelial progenitor cells (EPCs) participate in vascular repair and predict cardiovascular outcomes. The aim of this study was to investigate the correlation between EPCs and abdominal aortic aneurysms (AAAs). Methods and Results: Patients (age 67±9.41 years) suffering from AAAs (aortic diameters 58.09±11.24 mm) were prospectively enrolled in this study. All patients received endovascular aneurysm repair (EVAR). Blood samples were taken preoperatively and 14 days after surgery from patients with aortic aneurysms. Samples were also obtained from age-matched control subjects. Circulating EPCs were defined as those cells that were double positive for CD34 and CD309. Rat models of AAA formation were generated by the peri-adventitial elastase application of either saline solution (control; n=10), or porcine pancreatic elastase (PPE; n=14). The aortas were analyzed using an ultrasonic video system and immunohistochemistry. The levels of CD34+/CD309+ cells in the peripheral blood mononuclear cell populations were measured by flow cytometry. The baseline numbers of circulating EPCs (CD34+/CD309+) in the peripheral blood were significantly smaller in AAA patients compared with control subjects. The number of EPCs doubled by the 14th day after EVAR. A total of 78.57% of rats in the PPE group (11/14) formed AAAs (dilation ratio >150%). The numbers of EPCs from defined AAA rats were significantly decreased compared with the control group. Conclusions: EPC levels may be useful for monitoring abdominal aorta aneurysms and rise after EVAR in patients with aortic aneurysms, and might contribute to the rapid endothelialization of vessels.

17.
Stem Cell Res ; 60: 102720, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35231796

RESUMO

Marfan syndrome (MFS) is an autosomal genetic disorder caused by mutation in FBN1 gene, encoding the extracellular matrix protein fibrillin-1. Here, a MFS patient specific iPSC carrying a novel heterozygous mutation (c.7897 T > G) in FBN1 gene was generated. This iPSC line exhibited normal morphology and karyotype, and could differentiate into three germ layers in vivo and in vitro. Thus, the established iPSC line provided a precise platform for elucidating the molecular pathogenesis and personalized drug screening of MFS.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome de Marfan , Fibrilina-1/genética , Heterozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome de Marfan/genética , Síndrome de Marfan/patologia , Mutação/genética
18.
Adv Biol (Weinh) ; 6(11): e2200074, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35818695

RESUMO

Exosomes derived from human umbilical cord mesenchymal stem cells (UMSC-Exos) have shown encouraging effects in regulating inflammation and attenuating myocardial injury. Macrophages are regulated dynamically in response to environmental cues. However, the underlying mechanisms by which UMSC-Exos regulate macrophage polarization are still not well understood. Herein, it is aimed to explore the effects of UMSC-Exos on macrophage polarization and their roles in cardiac repair after myocardial infarction (MI). These results show that UMSC-Exos improve cardiac function by increasing M2 macrophage polarization and reducing excessive inflammation. RNA-sequencing results identify Plcb3 as a key gene involved in UMSC-Exo-facilitated M2 macrophage polarization. Further bioinformatic analysis identifies exosomal miR-24-3p as a potential effector mediating Plcb3 downregulation in macrophages. Increasing miR-24-3p expression in macrophages effectively enhances M2 macrophage polarization by suppressing Plcb3 expression and NF-κB pathway activation in the inflammatory environment. Furthermore, reducing miR-24-3p expression in UMSC-Exos attenuates the effects of UMSC-Exos on M2 macrophage polarization. This study demonstrates that the cardiac therapeutic effects of UMSC-Exos are at least partially through promoting M2 macrophage polarization in an inflammatory microenvironment. Mechanistically, exosomal miR-24-3p is found to inhibit Plcb3 expression and NF-κB pathway activation to promote M2 macrophage polarization.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Infarto do Miocárdio , Humanos , Exossomos/genética , NF-kappa B/genética , Cordão Umbilical , Macrófagos/metabolismo , Infarto do Miocárdio/genética , Inflamação/genética , MicroRNAs/genética
19.
J Cardiovasc Transl Res ; 14(3): 457-466, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32820393

RESUMO

Myocardial infarction leads to cardiomyocyte loss, ensuing ventricular pathological remodeling, dramatic impairment of cardiac function, and ultimately heart failure. Unfortunately, the existing therapeutical treatments cannot directly replenish the lost myocytes in the injured myocardium and the long-term prognosis of heart failure after myocardial infarction remains poor. Growing investigations have demonstrated that the adult mammalian cardiomyocytes possess very limited proliferation capacity, and that was not enough to restore the injured heart. Recently, many studies were targeting to promote cardiomyocyte proliferation via inducing cardiomyocyte cell cycle re-entry for cardiac repair after myocardial infarction. Indeed, these results showed it is a feasible way to stimulate terminally differentiated cardiomyocyte proliferation. Here, we reviewed the major mechanisms and the potential targets for stimulating mammalian adult cardiomyocyte proliferation specifically. This will provide a new therapeutic strategy for the clinical treatment of myocardial infarction by activating the endogenous regeneration. Graphical abstract.


Assuntos
Proliferação de Células , Infarto do Miocárdio/terapia , Miócitos Cardíacos/patologia , Regeneração , Animais , Proteínas de Ciclo Celular/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Humanos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/metabolismo , Fenótipo , RNA não Traduzido/metabolismo , Recuperação de Função Fisiológica , Transdução de Sinais , Fatores de Transcrição/metabolismo
20.
Ann Transl Med ; 9(24): 1776, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35071470

RESUMO

BACKGROUND: Thoracic aortic aneurysm/dissection (TAA/D) are complicated vascular disorders with rapid development and high mortality. Vascular smooth muscle cells (VSMCs) phenotype switching plays an important role in the pathological process of TAA/D. Previous studies have indicated a potential correlation between long non-coding RNA (lncRNA) RP11-465L10.10 and matrix metallopeptidase 9 (MMP9) involved in the development of TAA/D. This study aims to investigate the role of lncRNA RP11-465L10.10 in VSMCs phenotype switching and the molecular mechanism in regulating MMP9 expression. METHODS: The expression of RP11-465L10.10 in vascular tissues and in VMSCs was detected by RT-qPCR. To investigate the role of RP11-465L10.10 on VSMCs phenotype switching, an RP11-465L10.10-overexpressed lentiviral vector was constructed and transfected into VSMCs. Through EdU staining, migration assay, flow cytometry analysis, the roles of RP11-465L10.10 were estimated. Bioinformatics indicated that RP11-465L10.10 upregulating MMP9 expression via NF-κB signaling, and SN50 (a specific inhibitor of NF-κB pathway) was used to inhibit the NF-κB pathway activation, then the expression of MMP9 was detected in RP11-465L10.10 overexpressed VMSCs. RESULTS: In this study, we found RP11-465L10.10 and MMP9 were highly increased in TAD patient tissues, which was consistent in angiotensin II-induced VSMCs phenotype switching. RP11-465L10.10 overexpression facilitated VSMCs phenotype switching and MMP9 expression. Mechanismly, NF-κB signal pathway was involved in RP11-465L10.10 induced VSMCs phenotype switching and MMP9 expression by transcriptome data analysis and experimental confirm. CONCLUSION: This study demonstrated that RP11-465L10.10 induces VSMCs phenotype switching and MMP9 expression via the NF-κB signal pathway, suggesting that RP11-465L10.10 might be a potential therapeutic target for TAA/D treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA