RESUMO
Dual-ion batteries (DIBs) are a new kind of energy storage device that store energy involving the intercalation of both anions and cations on the cathode and anode simultaneously. They feature high output voltage, low cost, and good safety. Graphite was usually used as the cathode electrode because it could accommodate the intercalation of anions (i.e., PF6-, BF4-, ClO4-) at high cut-off voltages (up to 5.2 V vs. Li+/Li). The alloying-type anode of Si can react with cations and boost an extreme theoretic storage capacity of 4200 mAh g-1. Therefore, it is an efficient method to improve the energy density of DIBs by combining graphite cathodes with high-capacity silicon anodes. However, the huge volume expansion and poor electrical conductivity of Si hinders its practical application. Up to now, there have been only a few reports about exploring Si as an anode in DIBs. Herein, we prepared a strongly coupled silicon and graphene composite (Si@G) anode through in-situ electrostatic self-assembly and a post-annealing reduction process and investigated it as an anode in full DIBs together with home-made expanded graphite (EG) as a fast kinetic cathode. Half-cell tests showed that the as-prepared Si@G anode could retain a maximum specific capacity of 1182.4 mAh g-1 after 100 cycles, whereas the bare Si anode only maintained 435.8 mAh g-1. Moreover, the full Si@G//EG DIBs achieved a high energy density of 367.84 Wh kg-1 at a power density of 855.43 W kg-1. The impressed electrochemical performances could be ascribed to the controlled volume expansion and improved conductivity as well as matched kinetics between the anode and cathode. Thus, this work offers a promising exploration for high energy DIBs.
Assuntos
Grafite , Ligas , Eletrodos , Íons , Silício , Fontes de Energia ElétricaRESUMO
Bimetallic sulfides offer high theoretical specific capacitance and good stability as electrode materials due to their diverse redox reactions, larger specific surface areas, and better conductivity. The morphology of the electrode material is an important influencing factor for the electrochemical properties. Herein, a series of ZnCoS electrode materials with different morphologies were prepared by varying the solvent in the solvothermal reaction, and the effects of different microstructures on the electrochemical properties of ZnCoS were investigated. The ratio of water and ethanol in the solvent was controlled to modulate the microstructure of the as-prepared ZnCoS materials. XRD and XPS revealed the physical and chemical structure of the ZnCoS materials. SEM and TEM observations showed that the microstructure of ZnCoS transformed from one-dimensional wires to two-dimensional sheets with increasing amounts of ethanol. The maximum specific capacitance of the as-prepared ZnCoS materials is 6.22 F cm-2 at a current density of 5 mA cm-2, which is superior to that of most previously reported bimetallic sulfides. The enhanced electrochemical performance could be ascribed to its sheet-assembled spherical structure, which not only shortens the path of ion diffusion but also increases the contact between surface active sites and the electrolyte. Moreover, the spherical structure provides numerous void spaces for buffering the volume expansion and penetration of the electrolyte, which would be favorable for electrochemical reactions. Furthermore, the ZnCoS electrodes were coupled with activated carbon (AC) electrodes to build asymmetric supercapacitors (ASCs). The ASC device exhibits a maximum energy density of 0.124 mWh cm-2 under a power density of 2.1 mW cm-2. Moreover, even under a high-power density of 21 mW cm-2, the energy density can still reach 0.055 mWh cm-2.
RESUMO
Double-layered nanoporous silver is fabricated by dealloying an electrodeposited AgCu double layer with different compositions in each layer. The pore/ligament size and porosity of each layer can be conveniently tailored by controlling the applied voltage profile when electrodepositing the AgCu double-layer precursors. Therefore, nanoporous Ag double layers with a tailor-made porous profile along the film thickness can be easily fabricated. The Ag structures thus obtained are particularly attractive as novel multifunctional enhancement substrates for surface-enhanced Raman spectroscopy (SERS) applications. When a higher porosity is created in the top layer, the double layer can trap more light because of the antireflection effect, enabling stronger SERS enhancement. On the other hand, with smaller pores formed in the top layer, the double layer readily works as a size-screening SERS substrate that can help distinguish SERS signals from a mixture of reagents with different sizes. The theoretical simulation shows good agreement with the experimental observation.
RESUMO
Molybdenum disulfide (MoS2) has become one of the most promising non-platinum-based electrocatalysts for the hydrogen evolution reaction (HER) because of its unique layered structure. However, the catalytic performance of the thermodynamically stable MoS2 is hindered by its poor conductivity and scarce active sites. We developed a 3D porous N-doped graphene derivative-integrated metal-semiconductor (1T-2H) mixed phase MoS2 (MNG) using urea as a doping reagent. The highly exposed active sites were achieved by inducing the phase transition of MoS2 from 2H phase to 1T phase and the inclusion of highly N-incorporated reduced graphene oxide, both of which were simultaneously realized by optimizing the concentration of the doping reagent. Moreover, the charge/proton transfer was enhanced by the well-designed porous architecture and hydrophilic 1T-MoS2. With these advantages, the optimized MNG-40 catalyst has a small overpotential of 157 mV at a cathodic current density of 10 mA cm-2, a relatively low Tafel slope of 45.8 mV dec-1, and an excellent stability. This work represents a new strategy to design higher-performance HER catalysts and provides new insights into the structural regulation of metal composite transitions.
RESUMO
Ti3C2Tx, a novel two-dimensional layer material, is widely used as electrode materials of supercapacitor due to its good metal conductivity, redox reaction active surface, and so on. However, there are many challenges to be addressed which impede Ti3C2Tx obtaining the ideal specific capacitance, such as restacking, re-crushing, and oxidation of titanium. Recently, many advances have been proposed to enhance capacitance performance of Ti3C2Tx. In this review, recent strategies for improving specific capacitance are summarized and compared, for example, film formation, surface modification, and composite method. Furthermore, in order to comprehend the mechanism of those efforts, this review analyzes the energy storage performance in different electrolytes and influencing factors. This review is expected to predict redouble research direction of Ti3C2Tx materials in supercapacitors.
RESUMO
We have designed and synthesized a unique structured graphene/SnO2 composite, where SnO2 nanoparticles are inserted in between interconnected graphene sheets which form hollow spherical multilayers. The hollow spherical multilayered structure provides much flexibility to accommodate the configuration and volume changes of SnO2 in the material. When it is used as an anode material for lithium-ion batteries, such a novel nanostructure can not only provide a stable conductive matrix and suppress the mechanical stress, but also eliminate the need of any binders for constructing electrodes. Electrochemical tests show that the unique graphene/SnO2 composite electrode as designed could exhibit a large reversible capacity over 1000 mA h g-1 and long cycling life with 88% retention after 100 cycles. These results indicate the great potential of the composite for being used as a high performance anode material for lithium-ion batteries.
RESUMO
Three types of MnO2 nanostructures, viz., α-MnO2 nanotubes, hollow ß-MnO2 bipyramids, and solid ß-MnO2 bipyramids, have been synthesized via a simple template-free hydrothermal method. Cyclic voltammetry and galvanostatic charge/discharge measurements demonstrate that the hollow ß-MnO2 bipyramids exhibit the highest specific capacity and the best cyclability; the capacity retains 213 mAh g(-1) at a current density of 100 mA g(-1) after 150 cycles. XRD patterns of the lithiated ß-MnO2 electrodes clearly show the expansion of lattice volume caused by lithiation, but the structure keeps stable during lithium insertion/extraction process. We suggest that the excellent performance for ß-MnO2 can be attributed to its unique electrochemical reaction, compact tunnel-structure and hollow architecture. The hollow architecture can accommodate the volume change during charge/discharge process and improve effective diffusion paths for both lithium ions and electrons.
Assuntos
Fontes de Energia Elétrica , Lítio/química , Compostos de Manganês/química , Óxidos/química , Técnicas Eletroquímicas , Eletrodos , Íons/química , Nanotubos/químicaRESUMO
Nitrogen-doped carbon nanofiber webs (CNFWs) with high surface areas are successfully prepared by carbonization-activation of polypyrrole nanofiber webs with KOH. The as-obtained CNFWs exhibit a superhigh reversible capacity of 943 mAh g(-1) at a current density of 2 A g(-1) even after 600 cycles, which is ascribed to the novel porous nanostructure and high-level nitrogen doping.