RESUMO
Rice black-streaked dwarf virus disease (RBSDVD) and southern rice black-streaked dwarf virus disease (SRBSDVD) are the most destructive viral diseases in rice. Progress is limited in breeding due to lack of resistance resource and inadequate knowledge on the underlying functional gene. Using genome-wide association study (GWAS), linkage disequilibrium (LD) decay analyses, RNA-sequencing, and genome editing, we identified a highly RBSDVD-resistant variety and its first functional gene. A highly RBSDVD-resistant variety W44 was identified through extensive evaluation of a diverse international rice panel. Seventeen quantitative trait loci (QTLs) were identified among which qRBSDV6-1 had the largest phenotypic effect. It was finely mapped to a 0.8-1.2 Mb region on chromosome 6, with 62 annotated genes. Analysis of the candidate genes underlying qRBSDV6-1 showed high expression of aspartic proteinase 47 (OsAP47) in a susceptible variety, W122, and a low resistance variety, W44. OsAP47 overexpressing lines exhibited significantly reduced resistance, while the knockout mutants exhibited significantly reduced SRBSDVD and RBSDVD severity. Furthermore, the resistant allele Hap1 of OsAP47 is almost exclusive to Indica, but rare in Japonica. Results suggest that OsAP47 knockout by editing is effective for improving RBSDVD and SRBSDVD resistance. This study provides genetic information for breeding resistant cultivars.
Assuntos
Ácido Aspártico Proteases , Oryza , Viroses , Estudo de Associação Genômica Ampla , Oryza/genética , Peptídeo Hidrolases , Melhoramento Vegetal , Doenças das Plantas/genética , ReoviridaeRESUMO
Melatonin (MT) plays positive roles in salinity stress tolerance. However, the upstream signalling components that regulate MT are poorly understood. Here, we report that endogenous MT acts downstream of molecular hydrogen (H2 ) in the salinity response in Arabidopsis. The addition of hydrogen-rich water and expression of the hydrogenase1 gene (CrHYD1) from Chlamydomonas reinhardtii increased endogenous H2 and MT levels and enhanced salinity tolerance. These results were not observed in the absence of serotonin N-acetyltransferase gene (SNAT). H2 increased the levels of SNAT transcripts in the wild-type and CrHYD1 lines, which had lower Na+ /K+ ratios and higher levels of ion transport-related gene transcripts. These changes were not observed in atsnat/CrHYD1-4 hybrids. The increased MT-dependent Na+ extrusion observed in the CrHYD1 plants resulted, at least in part, from enhanced Na+ /H+ antiport across the plasma membrane. The endogenous H2 -induced MT-dependent regulation of ion and redox homeostasis was impaired in the atsnat/CrHYD1-4 hybrids. Taken together, these results demonstrate that MT-induced salinity tolerance is induced by a H2 signalling cascade that regulates ion and redox homeostasis in response to salinity.
Assuntos
Antioxidantes/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Hidrogênio/metabolismo , Melatonina/metabolismo , Transdução de Sinais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Homeostase , Salinidade , Tolerância ao Sal , Sódio/metabolismoRESUMO
Rice stripe virus (RSV) causes one of the most important rice virus diseases of plants in East Asia. However, the molecular mechanisms controlling rice resistance to RSV infection are largely unknown. Recently, several studies presented a novel model that melatonin (MT) and nitric oxide (NO) participate in the plant-pathogen interaction in a synergetic manner. In this study, there was a difference in MT content between two rice varieties that correlated with one being susceptible and one being resistant to RSV, which suggested that MT is related to RSV resistance. In addition, a test with two NO biosynthesis inhibitors revealed that NO inhibitor were able to increase the disease incidence of RSV. A pharmacological experiment with exogenous MT and NO showed that increased MT and NO in the MT-pretreated plants led to lower disease incidences; however, only NO increased in a NO-releasing reagent [sodium nitroprusside (SNP)] pretreated plants. The expressions level of OsPR1b and OsWRKY 45 were significantly induced by MT and NO. These results suggest that rice resistance to RSV can be improved by increased MT through a NO-dependent pathway.
Assuntos
Melatonina/metabolismo , Óxido Nítrico/metabolismo , Oryza/imunologia , Oryza/virologia , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Tenuivirus/imunologia , Resistência à Doença , Ásia Oriental , Interações Hospedeiro-PatógenoRESUMO
Although molecular hydrogen (H2) has potential therapeutic effects in animals, whether or how this gas functions in plant disease resistance has not yet been elucidated. Here, after rice stripe virus (RSV) infection, H2 production was pronouncedly stimulated in Zhendao 88, a resistant rice variety, compared to that in a susceptible variety (Wuyujing No.3). External H2 supply remarkably reduced the disease symptoms and RSV coat protein (CP) levels, especially in Wuyujing No.3. The above responses were abolished by the pharmacological inhibition of H2 production. The transgenic Arabidopsis plants overexpressing a hydrogenase gene from Chlamydomonas reinhardtii also improved plant resistance. In the presence of H2, the transcription levels of salicylic acid (SA) synthetic genes were stimulated, and the activity of SA glucosyltransferases was suppressed, thus facilitating SA accumulation. Genetic evidence revealed that two SA synthetic mutants of Arabidopsis (sid2-2 and pad4) were more susceptible to RSV than the wild type (WT). The treatments with H2 failed to improve the resistance to RSV in two SA synthetic mutants. The above results indicated that H2 enhances rice resistance to RSV infection possibly through the SA-dependent pathway. This study might open a new window for applying the H2-based approach to improve plant disease resistance. IMPORTANCE Although molecular hydrogen has potential therapeutic effects in animals, whether or how this gas functions in plant disease resistance has not yet been elucidated. RSV was considered the most devastating plant virus in rice, since it could cause severe losses in field production. This disease was thus selected as a classical model to explore the interrelationship between molecular hydrogen and plant pathogen resistance. In this study, we discovered that both exogenous and endogenous H2 could enhance plant resistance against Rice stripe virus infection by regulating salicylic acid signaling. Compared with some frequently used agrochemicals, H2 is almost nontoxic. We hope that the findings presented here will serve as an opportunity for the scientific community to push hydrogen-based agriculture forward.
RESUMO
BACKGROUND: Rice black-streaked dwarf virus (RBSDV) causes one of the most important rice virus diseases of plants in East Asia. However, molecular mechanism(s)controlling rice resistance to infection is largely unknown. RESULTS: In this paper, we showed that RBSDV infection in rice significantly induced nitric oxide (NO) production. This finding was further validated through a genetic approach using a RBSDV susceptible (Nipponbare) and a RBSDV resistant (15HPO187) cultivar. The production of endogenous NO was muchhigher in the 15HPO187 plants, leading to a much lower RBSDV disease incidence. Pharmacological studies showed that the applications of NO-releasingcompounds (i.e., sodium nitroprusside [SNP] and nitrosoglutathione [GSNO]) to rice plants reduced RBSDV disease incidence. After RBSDV infection, the levels of OsICS1, OsPR1b and OsWRKY 45 transcripts were significantly up-regulated by NO in Nipponbare. The increased salicylic acid contents were also observed. After the SNP treatment, protein S-nitrosylation in rice plants was also increased, suggesting that the NO-triggered resistance to RBSDV infection was partially mediated at the post-translational level. Although Osnia2 mutant rice produced less endogenous NO after RBSDV inoculation and showed a higher RBSDV disease incidence, its RBSDV susceptibility could be reduced by SNP treatment. CONCLUSIONS: Collectively, our genetic and molecular evidence revealed that endogenous NO was a vital signal responsible for rice resistance to RBSDV infection.