Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glia ; 64(5): 826-39, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26847266

RESUMO

The past decade has witnessed a revolution in our understanding of microglia. These immune cells were shown to actively remodel neuronal circuits, leading to propose new pathogenic mechanisms. To study microglial implication in the loss of synapses, the best pathological correlate of cognitive decline across chronic stress, aging, and diseases, we recently conducted ultrastructural analyses. Our work uncovered the existence of a new microglial phenotype that is rarely present under steady state conditions, in hippocampus, cerebral cortex, amygdala, and hypothalamus, but becomes abundant during chronic stress, aging, fractalkine signaling deficiency (CX3 CR1 knockout mice), and Alzheimer's disease pathology (APP-PS1 mice). Even though these cells display ultrastructural features of microglia, they are strikingly distinct from the other phenotypes described so far at the ultrastructural level. They exhibit several signs of oxidative stress, including a condensed, electron-dense cytoplasm and nucleoplasm making them as "dark" as mitochondria, accompanied by a pronounced remodeling of their nuclear chromatin. Dark microglia appear to be much more active than the normal microglia, reaching for synaptic clefts, while extensively encircling axon terminals and dendritic spines with their highly ramified and thin processes. They stain for the myeloid cell markers IBA1 and GFP (in CX3 CR1-GFP mice), and strongly express CD11b and microglia-specific 4D4 in their processes encircling synaptic elements, and TREM2 when they associate with amyloid plaques. Overall, these findings suggest that dark microglia, a new phenotype that we identified based on their unique properties, could play a significant role in the pathological remodeling of neuronal circuits, especially at synapses.


Assuntos
Envelhecimento/patologia , Doença de Alzheimer/patologia , Córtex Cerebral/patologia , Microglia/patologia , Estresse Psicológico/patologia , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Antígenos CD/metabolismo , Receptor 1 de Quimiocina CX3C , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Fenótipo , Presenilina-1/genética , Presenilina-1/metabolismo , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Estresse Psicológico/genética
2.
Learn Mem ; 22(10): 514-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26373830

RESUMO

Massed training is less effective for long-term memory formation than the spaced training. The role of acetylation in synaptic plasticity and memory is now well established. However, the role of this important protein modification in synaptic plasticity induced by massed pattern of stimulation or memory induced by massed training is not well understood. Here we show that increasing the level of acetylation enhances long-term potentiation induced by massed pattern of high frequency stimulation. Furthermore, enhancing acetylation level facilitates long-term memory by massed training. Thus, increasing acetylation level facilitates synaptic plasticity and memory by massed patterns.


Assuntos
Região CA1 Hipocampal/fisiologia , Histona Desacetilases/fisiologia , Potenciação de Longa Duração , Memória de Longo Prazo/fisiologia , Animais , Ácido Butírico/farmacologia , Região CA1 Hipocampal/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memória de Longo Prazo/efeitos dos fármacos
3.
Neuroreport ; 25(7): 470-4, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24384504

RESUMO

Protein phosphorylation is known to regulate synaptic plasticity and memory. Protein kinases including protein kinase A and extracellular signal-regulated kinase (ERK) play important roles in these processes. Forskolin, a protein kinase A activator, induces long-term potentiation (LTP) in the hippocampus. Forskolin also induces ERK activation, which plays important roles in LTP. However, the mechanisms of forskolin-induced ERK activation are not clearly understood. Here we show that forskolin induces sustained ERK activation in the hippocampal slices. Further, blockade of protein synthesis or transcription inhibits forskolin-induced sustained ERK activation. In contrast, forskolin-induced immediate ERK activation is unaffected by inhibition of protein synthesis or transcription. Sustained ERK activation may contribute to forskolin-induced LTP in the hippocampus.


Assuntos
AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hipocampo/metabolismo , Animais , Colforsina/farmacologia , Dactinomicina/farmacologia , Interações Medicamentosas , Emetina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Hipocampo/efeitos dos fármacos , Imidazóis/farmacologia , Técnicas In Vitro , Fosforilação , Ratos , Ratos Sprague-Dawley
4.
Sci Rep ; 3: 1103, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23346360

RESUMO

Phosphorylation plays important roles in several processes including synaptic plasticity and memory. The critical role of extracellular signal-regulated kinase (ERK) in these processes is well established. ERK is activated in a sustained manner by different stimuli. However, the mechanisms of sustained ERK activation are not completely understood. Here we show that KCl depolarization-induced sustained ERK activation in the hippocampal slices is critically dependent on protein synthesis and transcription. In addition, the sustained ERK activation requires receptor tyrosine kinase(s) activity. In support of a role for a growth factor in sustained ERK activation, KCl depolarization enhances the level of brain-derived neurotrophic factor (BDNF). Furthermore, BDNF antibody blocks KCl-induced sustained ERK activation. These results suggest a positive feed-back loop in which depolarization-induced BDNF maintains ERK activation in the sustained phase.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hipocampo/enzimologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Retroalimentação Fisiológica , Hipocampo/metabolismo , Masculino , Cloreto de Potássio/metabolismo , Ratos , Ratos Sprague-Dawley , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA