Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(22): e2302006120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216503

RESUMO

The stringent response, which leads to persistence of nutrient-starved mycobacteria, is induced by activation of the RelA/SpoT homolog (Rsh) upon entry of a deacylated-tRNA in a translating ribosome. However, the mechanism by which Rsh identifies such ribosomes in vivo remains unclear. Here, we show that conditions inducing ribosome hibernation result in loss of intracellular Rsh in a Clp protease-dependent manner. This loss is also observed in nonstarved cells using mutations in Rsh that block its interaction with the ribosome, indicating that Rsh association with the ribosome is important for Rsh stability. The cryo-EM structure of the Rsh-bound 70S ribosome in a translation initiation complex reveals unknown interactions between the ACT domain of Rsh and components of the ribosomal L7/L12 stalk base, suggesting that the aminoacylation status of A-site tRNA is surveilled during the first cycle of elongation. Altogether, we propose a surveillance model of Rsh activation that originates from its constitutive interaction with the ribosomes entering the translation cycle.


Assuntos
Mycobacterium , Ribossomos , Ribossomos/genética , RNA de Transferência/química , Mycobacterium/genética
2.
Mol Cell ; 54(3): 407-417, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24746697

RESUMO

Fragile X syndrome (FXS) is the most common form of inherited mental retardation, and it is caused by loss of function of the fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that is involved in the translational regulation of several neuronal mRNAs. However, the precise mechanism of translational inhibition by FMRP is unknown. Here, we show that FMRP inhibits translation by binding directly to the L5 protein on the 80S ribosome. Furthermore, cryoelectron microscopic reconstruction of the 80S ribosome⋅FMRP complex shows that FMRP binds within the intersubunit space of the ribosome such that it would preclude the binding of tRNA and translation elongation factors on the ribosome. These findings suggest that FMRP inhibits translation by blocking the essential components of the translational machinery from binding to the ribosome.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Proteína do X Frágil da Deficiência Intelectual/fisiologia , Regulação da Expressão Gênica , Iniciação Traducional da Cadeia Peptídica , Ribossomos/metabolismo , Animais , Microscopia Crioeletrônica , Proteínas de Drosophila/química , Drosophila melanogaster/genética , Proteína do X Frágil da Deficiência Intelectual/química , Quadruplex G , Células HEK293 , Humanos , Modelos Moleculares , Ligação Proteica , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Ribossomos/química
3.
Proc Natl Acad Sci U S A ; 116(17): 8283-8288, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30962385

RESUMO

Mammalian mitochondrial ribosomes (mitoribosomes) are responsible for synthesizing proteins that are essential for oxidative phosphorylation (ATP generation). Despite their common ancestry with bacteria, the composition and structure of the human mitoribosome and its translational factors are significantly different from those of their bacterial counterparts. The mammalian mitoribosome recycling factor (RRFmt) carries a mito-specific N terminus extension (NTE), which is necessary for the function of RRFmt Here we present a 3.9-Å resolution cryo-electron microscopic (cryo-EM) structure of the human 55S mitoribosome-RRFmt complex, which reveals α-helix and loop structures for the NTE that makes multiple mito-specific interactions with functionally critical regions of the mitoribosome. These include ribosomal RNA segments that constitute the peptidyl transferase center (PTC) and those that connect PTC with the GTPase-associated center and with mitoribosomal proteins L16 and L27. Our structure reveals the presence of a tRNA in the pe/E position and a rotation of the small mitoribosomal subunit on RRFmt binding. In addition, we observe an interaction between the pe/E tRNA and a mito-specific protein, mL64. These findings help understand the unique features of mitoribosome recycling.


Assuntos
Ribossomos Mitocondriais , Proteínas Ribossômicas , Microscopia Crioeletrônica , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Humanos , Ribossomos Mitocondriais/química , Ribossomos Mitocondriais/metabolismo , Ribossomos Mitocondriais/ultraestrutura , Modelos Moleculares , Peptidil Transferases/química , Peptidil Transferases/metabolismo , RNA Ribossômico/química , RNA Ribossômico/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-33361293

RESUMO

Zinc is an essential micronutrient for mycobacteria, and its depletion induces multiple adaptive changes in cellular physiology, the most remarkable of which are remodeling and hibernation of ribosomes. Ribosome remodeling, induced upon relatively moderate depletion of zinc, involves replacement of multiple ribosomal proteins containing the zinc-binding CXXC motif (called C+ r proteins) by their motif-free C- paralogs. Severe zinc depletion induces binding of mycobacterial protein Y (Mpy) to the 70S C- ribosome, thereby stabilizing the ribosome in an inactive state that is also resistant to kanamycin and streptomycin. Because the Mpy binding region on the ribosome is proximal to the binding pocket of spectinamides (Spa), the preclinical drug candidates for tuberculosis, we addressed the impact of remodeling and hibernation of ribosomes on Spa sensitivity. We report here that while Mpy binding has no significant effect on Spa sensitivity to the ribosome, replacement of S14C+ with its C- counterpart reduces the binding affinity of the drug by ∼2-fold, causing increased Spa tolerance in Mycobacterium smegmatis and Mycobacterium tuberculosis cells harboring the C- ribosome. The altered interaction between Spa and ribosomes likely results from new contact points for D67 and R83 residues of S14C- with U1138 and C1184 of 16S rRNA helix 34, respectively. Given that M. tuberculosis induces ribosome remodeling during progression from the acute to chronic phase of lung infection, our findings highlight new considerations in the development of Spa as effective drugs against tuberculosis.


Assuntos
Preparações Farmacêuticas , Zinco , RNA Ribossômico 16S , Proteínas Ribossômicas/genética , Ribossomos/genética , Fatores de Transcrição
5.
Microbiology (Reading) ; 167(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33555244

RESUMO

Treatment of tuberculosis requires a multi-drug regimen administered for at least 6 months. The long-term chemotherapy is attributed in part to a minor subpopulation of nonreplicating Mycobacterium tuberculosis cells that exhibit phenotypic tolerance to antibiotics. The origins of these cells in infected hosts remain unclear. Here we discuss some recent evidence supporting the hypothesis that hibernation of ribosomes in M. tuberculosis, induced by zinc starvation, could be one of the primary mechanisms driving the development of nonreplicating persisters in hosts. We further analyse inconsistencies in previously reported studies to clarify the molecular principles underlying mycobacterial ribosome hibernation.


Assuntos
Mycobacterium/fisiologia , Tuberculose/microbiologia , Antituberculosos/metabolismo , Antituberculosos/uso terapêutico , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Humanos , Mycobacterium/efeitos dos fármacos , Mycobacterium/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Tuberculose/tratamento farmacológico , Zinco/deficiência
6.
Proc Natl Acad Sci U S A ; 115(32): 8191-8196, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30038002

RESUMO

Bacteria respond to zinc starvation by replacing ribosomal proteins that have the zinc-binding CXXC motif (C+) with their zinc-free (C-) paralogues. Consequences of this process beyond zinc homeostasis are unknown. Here, we show that the C- ribosome in Mycobacterium smegmatis is the exclusive target of a bacterial protein Y homolog, referred to as mycobacterial-specific protein Y (MPY), which binds to the decoding region of the 30S subunit, thereby inactivating the ribosome. MPY binding is dependent on another mycobacterial protein, MPY recruitment factor (MRF), which is induced on zinc depletion, and interacts with C- ribosomes. MPY binding confers structural stability to C- ribosomes, promoting survival of growth-arrested cells under zinc-limiting conditions. Binding of MPY also has direct influence on the dynamics of aminoglycoside-binding pockets of the C- ribosome to inhibit binding of these antibiotics. Together, our data suggest that zinc limitation leads to ribosome hibernation and aminoglycoside resistance in mycobacteria. Furthermore, our observation of the expression of the proteins of C- ribosomes in Mycobacterium tuberculosis in a mouse model of infection suggests that ribosome hibernation could be relevant in our understanding of persistence and drug tolerance of the pathogen encountered during chemotherapy of TB.


Assuntos
Antibióticos Antituberculose/farmacologia , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/fisiologia , Proteínas Ribossômicas/metabolismo , Tuberculose/tratamento farmacológico , Zinco/deficiência , Aminoglicosídeos/farmacologia , Animais , Microscopia Crioeletrônica , Modelos Animais de Doenças , Farmacorresistência Bacteriana , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Modelos Moleculares , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/fisiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Biossíntese de Proteínas/fisiologia , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Tuberculose/microbiologia , Tuberculose/patologia
7.
Proc Natl Acad Sci U S A ; 111(20): 7284-9, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24799711

RESUMO

The mammalian mitochondrial ribosomes (mitoribosomes) are responsible for synthesizing 13 membrane proteins that form essential components of the complexes involved in oxidative phosphorylation or ATP generation for the eukaryotic cell. The mammalian 55S mitoribosome contains significantly smaller rRNAs and a large mass of mitochondrial ribosomal proteins (MRPs), including large mito-specific amino acid extensions and insertions in MRPs that are homologous to bacterial ribosomal proteins and an additional 35 mito-specific MRPs. Here we present the cryo-EM structure analysis of the small (28S) subunit (SSU) of the 55S mitoribosome. We find that the mito-specific extensions in homologous MRPs generally are involved in inter-MRP contacts and in contacts with mito-specific MRPs, suggesting a stepwise evolution of the current architecture of the mitoribosome. Although most of the mito-specific MRPs and extensions of homologous MRPs are situated on the peripheral regions, they also contribute significantly to the formation of linings of the mRNA and tRNA paths, suggesting a tailor-made structural organization of the mito-SSU for the recruitment of mito-specific mRNAs, most of which do not possess a 5' leader sequence. In addition, docking of previously published coordinates of the large (39S) subunit (LSU) into the cryo-EM map of the 55S mitoribosome reveals that mito-specific MRPs of both the SSU and LSU are involved directly in the formation of six of the 15 intersubunit bridges.


Assuntos
Mitocôndrias/metabolismo , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Animais , Sítios de Ligação , Bovinos , Microscopia Crioeletrônica , Citoplasma/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Processamento de Imagem Assistida por Computador , Fígado/metabolismo , Conformação Proteica , RNA Mensageiro/metabolismo , RNA Ribossômico 16S/metabolismo , RNA de Transferência/metabolismo , Proteínas Ribossômicas/metabolismo
9.
bioRxiv ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38915643

RESUMO

HflX is known to rescue stalled ribosomes and is implicated in antibiotic resistance in several bacteria. Here we present several high-resolution cryo-EM structures of mycobacterial HflX in complex with the ribosome and its 50S subunit, with and without antibiotics. These structures reveal a distinct mechanism for HflX-mediated ribosome splitting and antibiotic resistance in mycobacteria. In addition to dissociating ribosome into two subunits, mycobacterial HflX mediates persistent disordering of multiple 23S rRNA helices to generate an inactive pool of 50S subunits. Mycobacterial HflX also acts as an anti-association factor by binding to pre-dissociated 50S subunits. A mycobacteria-specific insertion in HflX reaches further into the peptidyl transferase center. The position of this insertion overlaps with ribosome-bound macrolides or lincosamide class of antibiotics. The extended conformation of insertion seen in the absence of these antibiotics retracts and adjusts around the bound antibiotics instead of physically displacing them. It therefore likely imparts antibiotic resistance by sequestration of the antibiotic-bound inactive 50S subunits.

10.
bioRxiv ; 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37034768

RESUMO

Treatment of tuberculosis continues to be challenging due to the widespread latent form of the disease and the emergence of antibiotic-resistant strains of the pathogen, Mycobacterium tuberculosis. Bacterial ribosomes are a common and effective target for antibiotics. Several second line anti-tuberculosis drugs, e.g. kanamycin, amikacin, and capreomycin, target ribosomal RNA to inhibit protein synthesis. However, M. tuberculosis can acquire resistance to these drugs, emphasizing the need to identify new drug targets. Previous cryo-EM structures of the M. tuberculosis and M. smegmatis ribosomes identified two novel ribosomal proteins, bS22 and bL37, in the vicinity of two crucial drug-binding sites: the mRNA-decoding center on the small (30S), and the peptidyl-transferase center on the large (50S) ribosomal subunits, respectively. The functional significance of these two small proteins is unknown. In this study, we observe that an M. smegmatis strain lacking the bs22 gene shows enhanced susceptibility to kanamycin compared to the wild-type strain. Cryo-EM structures of the ribosomes lacking bS22 in the presence and absence of kanamycin suggest a direct role of bS22 in modulating the 16S rRNA kanamycin-binding site. Our structures suggest that amino-acid residue Lys-16 of bS22 interacts directly with the phosphate backbone of helix 44 of 16S rRNA to influence the micro-configuration of the kanamycin-binding pocket. Our analysis shows that similar interactions occur between eukaryotic homologues of bS22, and their corresponding rRNAs, pointing to a common mechanism of aminoglycoside resistance in higher organisms.

11.
Nat Commun ; 14(1): 6961, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907464

RESUMO

The spirochete bacterial pathogen Borrelia (Borreliella) burgdorferi (Bbu) affects more than 10% of the world population and causes Lyme disease in about half a million people in the US annually. Therapy for Lyme disease includes antibiotics that target the Bbu ribosome. Here we present the structure of the Bbu 70S ribosome obtained by single particle cryo-electron microscopy at 2.9 Å resolution, revealing a bound hibernation promotion factor protein and two genetically non-annotated ribosomal proteins bS22 and bL38. The ribosomal protein uL30 in Bbu has an N-terminal α-helical extension, partly resembling the mycobacterial bL37 protein, suggesting evolution of bL37 and a shorter uL30 from a longer uL30 protein. Its analogy to proteins uL30m and mL63 in mammalian mitochondrial ribosomes also suggests a plausible evolutionary pathway for expansion of protein content in mammalian mitochondrial ribosomes. Computational binding free energy predictions for antibiotics reflect subtle distinctions in antibiotic-binding sites in the Bbu ribosome. Discovery of these features in the Bbu ribosome may enable better ribosome-targeted antibiotic design for Lyme disease treatment.


Assuntos
Proteínas de Bactérias , Doença de Lyme , Animais , Humanos , Microscopia Crioeletrônica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ribossomos/metabolismo , Proteínas Ribossômicas/metabolismo , Antibacterianos/metabolismo , Mamíferos/metabolismo
12.
bioRxiv ; 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37131667

RESUMO

The spirochete bacterial pathogen Borrelia ( Borreliella) burgdorferi ( Bbu ) affects more than 10% of the world population and causes Lyme disease in about half a million people in the US annually. Therapy for Lyme disease includes antibiotics that target the Bbu ribosome. We determined the structure of the Bbu 70S ribosome by single particle cryo-electron microscopy (cryo-EM) at a resolution of 2.9 Å, revealing its distinctive features. In contrast to a previous study suggesting that the single hibernation promoting factor protein present in Bbu (bbHPF) may not bind to its ribosome, our structure reveals a clear density for bbHPF bound to the decoding center of the small ribosomal 30S subunit. The 30S subunit has a non-annotated ribosomal protein, bS22, that has been found only in mycobacteria and Bacteroidetes so far. The protein bL38, recently discovered in Bacteroidetes, is also present in the Bbu large 50S ribosomal subunit. The protein bL37, previously seen only in mycobacterial ribosomes, is replaced by an N-terminal α-helical extension of uL30, suggesting that the two bacterial ribosomal proteins uL30 and bL37 may have evolved from one longer uL30 protein. The longer uL30 protein interacts with both the 23S rRNA and the 5S rRNA, is near the peptidyl transferase center (PTC), and could impart greater stability to this region. Its analogy to proteins uL30m and mL63 in mammalian mitochondrial ribosomes also suggests a plausible evolutionary pathway for expansion of protein content in mammalian mitochondrial ribosomes. Computational binding free energies are predicted for antibiotics, bound to the decoding center or PTC and are in clinical use for Lyme disease, that account for subtle distinctions in antibiotic-binding regions in the Bbu ribosome structure. Besides revealing unanticipated structural and compositional features for the Bbu ribosome, our study thus provides groundwork to enable ribosome-targeted antibiotic design for more effective treatment of Lyme disease.

13.
Proc Natl Acad Sci U S A ; 106(24): 9637-42, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19497863

RESUMO

The Leishmania tarentolae mitochondrial ribosome (Lmr) is a minimal ribosomal RNA (rRNA)-containing ribosome. We have obtained a cryo-EM map of the Lmr. The map reveals several features that have not been seen in previously-determined structures of eubacterial or eukaryotic (cytoplasmic or organellar) ribosomes to our knowledge. Comparisons of the Lmr map with X-ray crystallographic and cryo-EM maps of the eubacterial ribosomes and a cryo-EM map of the mammalian mitochondrial ribosome show that (i) the overall structure of the Lmr is considerably more porous, (ii) the topology of the intersubunit space is significantly different, with fewer intersubunit bridges, but more tunnels, and (iii) several of the functionally-important rRNA regions, including the alpha-sarcin-ricin loop, have different relative positions within the structure. Furthermore, the major portions of the mRNA channel, the tRNA passage, and the nascent polypeptide exit tunnel contain Lmr-specific proteins, suggesting that the mechanisms for mRNA recruitment, tRNA interaction, and exiting of the nascent polypeptide in Lmr must differ markedly from the mechanisms deduced for ribosomes in other organisms. Our study identifies certain structural features that are characteristic solely of mitochondrial ribosomes and other features that are characteristic of both mitochondrial and chloroplast ribosomes (i.e., organellar ribosomes).


Assuntos
Leishmania/genética , Mitocôndrias/química , Ribossomos/química , Animais , Microscopia Crioeletrônica , Mitocôndrias/metabolismo , Modelos Moleculares , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Ribossomos/ultraestrutura
14.
J Biol Chem ; 285(6): 4006-4014, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19965869

RESUMO

Plastid-specific ribosomal proteins (PSRPs) have been proposed to play roles in the light-dependent regulation of chloroplast translation. Here we demonstrate that PSRP1 is not a bona fide ribosomal protein, but rather a functional homologue of the Escherichia coli cold-shock protein pY. Three-dimensional Cryo-electron microscopic (Cryo-EM) reconstructions reveal that, like pY, PSRP1 binds within the intersubunit space of the 70S ribosome, at a site overlapping the positions of mRNA and A- and P-site tRNAs. PSRP1 induces conformational changes within ribosomal components that comprise several intersubunit bridges, including bridge B2a, thereby stabilizes the ribosome against dissociation. We find that the presence of PSRP1/pY lowers the binding of tRNA to the ribosome. Furthermore, similarly to tRNAs, PSRP1/pY is recycled from the ribosome by the concerted action of the ribosome-recycling factor (RRF) and elongation factor G (EF-G). These results suggest a novel function for EF-G and RRF in the post-stress return of PSRP1/pY-inactivated ribosomes to the actively translating pool.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Microscopia Crioeletrônica , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Subunidades Ribossômicas/química , Subunidades Ribossômicas/metabolismo , Subunidades Ribossômicas/ultraestrutura , Ribossomos/química , Ribossomos/ultraestrutura , Homologia de Sequência de Aminoácidos , Spinacia oleracea/genética , Spinacia oleracea/metabolismo
15.
Proc Natl Acad Sci U S A ; 104(49): 19315-20, 2007 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-18042701

RESUMO

Protein synthesis in the chloroplast is carried out by chloroplast ribosomes (chloro-ribosome) and regulated in a light-dependent manner. Chloroplast or plastid ribosomal proteins (PRPs) generally are larger than their bacterial counterparts, and chloro-ribosomes contain additional plastid-specific ribosomal proteins (PSRPs); however, it is unclear to what extent these proteins play structural or regulatory roles during translation. We have obtained a three-dimensional cryo-EM map of the spinach 70S chloro-ribosome, revealing the overall structural organization to be similar to bacterial ribosomes. Fitting of the conserved portions of the x-ray crystallographic structure of the bacterial 70S ribosome into our cryo-EM map of the chloro-ribosome reveals the positions of PRP extensions and the locations of the PSRPs. Surprisingly, PSRP1 binds in the decoding region of the small (30S) ribosomal subunit, in a manner that would preclude the binding of messenger and transfer RNAs to the ribosome, suggesting that PSRP1 is a translation factor rather than a ribosomal protein. PSRP2 and PSRP3 appear to structurally compensate for missing segments of the 16S rRNA within the 30S subunit, whereas PSRP4 occupies a position buried within the head of the 30S subunit. One of the two PSRPs in the large (50S) ribosomal subunit lies near the tRNA exit site. Furthermore, we find a mass of density corresponding to chloro-ribosome recycling factor; domain II of this factor appears to interact with the flexible C-terminal domain of PSRP1. Our study provides evolutionary insights into the structural and functional roles that the PSRPs play during protein synthesis in chloroplasts.


Assuntos
Cloroplastos/química , Proteínas de Plantas/química , Proteínas Ribossômicas/química , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/química , Cloroplastos/ultraestrutura , Microscopia Crioeletrônica , Cristalografia por Raios X , Evolução Molecular , Proteínas de Plantas/metabolismo , Plastídeos/química , Plastídeos/ultraestrutura , Conformação Proteica , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Subunidades Ribossômicas Menores de Eucariotos/ultraestrutura , Spinacia oleracea/metabolismo
16.
Nat Commun ; 11(1): 3830, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737313

RESUMO

The mammalian mitochondrial ribosome (mitoribosome) and its associated translational factors have evolved to accommodate greater participation of proteins in mitochondrial translation. Here we present the 2.68-3.96 Å cryo-EM structures of the human 55S mitoribosome in complex with the human mitochondrial elongation factor G1 (EF-G1mt) in three distinct conformational states, including an intermediate state and a post-translocational state. These structures reveal the role of several mitochondria-specific (mito-specific) mitoribosomal proteins (MRPs) and a mito-specific segment of EF-G1mt in mitochondrial tRNA (tRNAmt) translocation. In particular, the mito-specific C-terminal extension in EF-G1mt is directly involved in translocation of the acceptor arm of the A-site tRNAmt. In addition to the ratchet-like and independent head-swiveling motions exhibited by the small mitoribosomal subunit, we discover significant conformational changes in MRP mL45 at the nascent polypeptide-exit site within the large mitoribosomal subunit that could be critical for tethering of the elongating mitoribosome onto the inner-mitochondrial membrane.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Elongação Traducional da Cadeia Peptídica , Fator G para Elongação de Peptídeos/química , RNA Mitocondrial/química , RNA de Transferência/química , Proteínas Ribossômicas/química , Ribossomos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Microscopia Crioeletrônica , Células HEK293 , Humanos , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/ultraestrutura , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
17.
iScience ; 12: 76-86, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30677741

RESUMO

The human mitochondrial translational initiation factor 3 (IF3mt) carries mitochondrial-specific amino acid extensions at both its N and C termini (N- and C-terminal extensions [NTE and CTE, respectively]), when compared with its eubacterial counterpart. Here we present 3.3- to 3.5-Å-resolution cryoelectron microscopic structures of the mammalian 28S mitoribosomal subunit in complex with human IF3mt. Unique contacts observed between the 28S subunit and N-terminal domain of IF3mt explain its unusually high affinity for the 28S subunit, whereas the position of the mito-specific NTE suggests NTE's role in binding of initiator tRNA to the 28S subunit. The location of the C-terminal domain (CTD) clarifies its anti-association activity, whereas the orientation of the mito-specific CTE provides a mechanistic explanation for its role in destabilizing initiator tRNA in the absence of mRNA. Furthermore, our structure hints at a possible role of the CTD in recruiting leaderless mRNAs for translation initiation. Our findings highlight unique features of IF3mt in mitochondrial translation initiation.

18.
Mol Biochem Parasitol ; 152(2): 203-12, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17292489

RESUMO

A novel type of ribonucleoprotein (RNP) complex has been described from the kinetoplast-mitochondria of Leishmania tarentolae. The complex, termed the 45S SSU*, contains the 9S small subunit rRNA but does not contain the 12S large subunit rRNA. This complex is the most stable and abundant mitochondrial RNP complex present in Leishmania. As shown by tandem mass spectrometry, the complex contains at least 39 polypeptides with a combined molecular mass of almost 2.1 MDa. These components include several homologs of small subunit ribosomal proteins (S5, S6, S8, S9, S11, S15, S16, S17, S18, MRPS29); however, most of the polypeptides present are unique. Only a few of them show recognizable motifs, such as protein-protein (coiled-coil, Rhodanese) or protein-RNA (pentatricopeptide repeat) interaction domains. A cryo-electron microscopy examination of the 45S SSU* fraction reveals that 27% of particles represent SSU homodimers arranged in a head-to-tail orientation, while the majority of particles are clearly different and show an asymmetric bilobed morphology. Multiple classes of two-dimensional averages were derived for the asymmetrical particles, probably reflecting random orientations of the particles and difficulties in correlating these views with the known projections of ribosomal complexes. One class of the two-dimensional averages shows a SSU moiety attached to a protein mass or masses in a monosome-like appearance. The combined mass spectrometry and electron microscopy data thus indicate that the majority 45S SSU* particles represents a heterodimeric complex in which the SSU of the Leishmania mitochondrial ribosome is associated with an additional protein mass. The biological role of these particles is not known.


Assuntos
Leishmania/química , Proteínas Mitocondriais/química , Proteínas de Protozoários/química , Ribonucleoproteínas/química , Animais , Microscopia Crioeletrônica , Leishmania/metabolismo , Leishmania/ultraestrutura , Mitocôndrias/metabolismo , Proteínas Mitocondriais/isolamento & purificação , Proteínas Mitocondriais/ultraestrutura , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteômica , Proteínas de Protozoários/isolamento & purificação , Proteínas de Protozoários/ultraestrutura , RNA Ribossômico/química , Ribonucleoproteínas/isolamento & purificação , Ribonucleoproteínas/ultraestrutura , Proteínas Ribossômicas/química , Espectrometria de Massas em Tandem
19.
J Mol Biol ; 358(1): 193-212, 2006 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-16510155

RESUMO

Protein translation is essential for all forms of life and is conducted by a macromolecular complex, the ribosome. Evolutionary changes in protein and RNA sequences can affect the 3D organization of structural features in ribosomes in different species. The most dramatic changes occur in animal mitochondria, whose genomes have been reduced and altered significantly. The RNA component of the mitochondrial ribosome (mitoribosome) is reduced in size, with a compensatory increase in protein content. Until recently, it was unclear how these changes affect the 3D structure of the mitoribosome. Here, we present a structural model of the large subunit of the mammalian mitoribosome developed by combining molecular modeling techniques with cryo-electron microscopic data at 12.1A resolution. The model contains 93% of the mitochondrial rRNA sequence and 16 mitochondrial ribosomal proteins in the large subunit of the mitoribosome. Despite the smaller mitochondrial rRNA, the spatial positions of RNA domains known to be involved directly in protein synthesis are essentially the same as in bacterial and archaeal ribosomes. However, the dramatic reduction in rRNA content necessitates evolution of unique structural features to maintain connectivity between RNA domains. The smaller rRNA sequence also limits the likelihood of tRNA binding at the E-site of the mitoribosome, and correlates with the reduced size of D-loops and T-loops in some animal mitochondrial tRNAs, suggesting co-evolution of mitochondrial rRNA and tRNA structures.


Assuntos
Mitocôndrias/química , Mitocôndrias/genética , Modelos Moleculares , Ribossomos/química , Ribossomos/genética , Animais , Sequência de Bases , Bovinos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Conformação Proteica , RNA/química , RNA/genética , RNA Mitocondrial , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA de Transferência/genética , Reprodutibilidade dos Testes , Proteínas Ribossômicas/química , Homologia Estrutural de Proteína
20.
Mol Biochem Parasitol ; 148(1): 69-78, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16600399

RESUMO

We have analyzed Leishmania tarentolae mitochondrial ribonucleoprotein (RNP) complexes using the 9S small subunit (SSU) rRNA and the 12S large subunit (LSU) rRNA as markers, and have identified a 50S RNP particle as the putative mitochondrial monosome, a 40S particle as the putative LSU and a 30S particle as the putative SSU. These assignments are supported by morphological analysis by cryo-electron microscopy and proteomics analyses by mass spectrometry. The presence of additional rRNA-containing particles complicated the analysis and most likely was the basis for previous difficulties in identification of these ribosomes; thus, in addition to the monosomes and their subunits, there are abundant stable 45S particles (SSU(*)) containing only 9S rRNA, which may represent homodimers of the SSU or SSU associated with additional proteins, and variable minor amounts of 65S and 70S particles, which represent homodimers of the LSU and SSU(*), respectively. These additional rRNA particles might be due to the lengthy mitochondrial isolation and ribosome isolation procedures or may be present in vivo and play yet undetermined roles.


Assuntos
Leishmania/citologia , Mitocôndrias , Subunidades Proteicas/análise , Proteínas de Protozoários/análise , Ribonucleoproteínas/isolamento & purificação , Ribossomos/química , Ribossomos/ultraestrutura , Animais , Microscopia Crioeletrônica , Espectrometria de Massas , Microscopia Eletrônica , Peso Molecular , Subunidades Proteicas/química , Proteínas de Protozoários/química , Ribonucleoproteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA