Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Mamm Genome ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075281

RESUMO

Camels, known as the "Ship of the Desert," play a vital role in the ecosystems and economies of arid and semi-arid regions. They provide meat, milk, transportation, and other essential services, and their resilience to harsh environments makes them invaluable. Despite their similarities, camel breeds exhibit notable differences in size, color, and structure, with over 40 million camels worldwide. This number is projected to increase, underscoring their growing significance. Economically, camels are crucial for food production, tourism, and trade, with camel racing being particularly significant in Arab countries. Their unique physiological traits, such as low disease susceptibility and efficient water conservation, further enhance their value. Camel products, especially meat and milk, offer substantial nutritional and therapeutic benefits, contributing to their high demand. Genetic diversity studies have advanced our understanding of camels' adaptation to extreme environments. Functional genomics and whole-genome sequencing have identified genes responsible for these adaptations, aiding breeding programs and conservation efforts. High-throughput sequencing has revealed genetic markers linked to traits like milk production and disease resistance. The development of SNP chips has revolutionized genetic studies by providing a cost-effective alternative to whole-genome sequencing. These tools facilitate large-scale genotyping, essential for conserving genetic diversity and improving breeding strategies. To prevent the depletion of camel genetic diversity, it is crucial to streamline in situ and ex situ conservation efforts to maintain their ecological and economic value. A comprehensive approach to camel conservation and genetic preservation, involving advanced genomic technologies, reproductive biotechniques, and sustainable management practices, will ensure their continued contribution to human societies.

2.
Mamm Genome ; 35(3): 390-398, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38888811

RESUMO

This study explored the genetic diversity and evolutionary history of riverine and swamp buffaloes in India, utilizing complete mitochondrial genome sequences. Through comprehensive sampling across varied agro-climatic zones, including 91 riverine buffaloes from 12 breeds and 6 non-descript populations, along with 16 swamp buffaloes of the Luit breed, this study employed next-generation sequencing techniques to map the mitogenomic landscape of these subspecies. Sequence alignments were performed with the buffalo mitochondrial reference genome to identify mitochondrial DNA (mtDNA) variations and distinct maternal haplogroups among Indian buffaloes. The results uncovered the existence of 212 variable sites in riverine buffaloes, yielding 67 haplotypes with high haplotype diversity (0.991), and in swamp buffaloes, 194 variable sites resulting in 12 haplotypes, displaying haplotype diversity of 0.950. Phylogenetic analyses elucidated the genetic relationships between Indian buffaloes and the recognized global haplogroups, categorizing Indian swamp buffaloes predominantly into the SA haplogroup. Intriguingly, the haplogroup SB2b was observed for the first time in swamp buffaloes. Conversely, riverine buffaloes conformed to established sub-haplogroups RB1, RB2, and RB3, underscoring the notion of Northwestern India as a pivotal domestication site for riverine buffaloes. The study supports the hypothesis of independent domestication events for riverine and swamp buffaloes, highlighting the critical role of genetic analysis in unraveling the complex evolutionary pathways of domestic animals. This investigation contributes to the global understanding of buffalo mitogenome diversity, offering insights into this important livestock species' domestication and dispersal patterns.


Assuntos
Búfalos , Variação Genética , Genoma Mitocondrial , Haplótipos , Filogenia , Animais , Búfalos/genética , Índia , DNA Mitocondrial/genética , Feminino , Herança Materna
3.
Mamm Genome ; 35(2): 160-169, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38589518

RESUMO

Ladakh, one of the highest inhabited regions globally, hosts the unique Changthangi goat, renowned for producing Pashmina, the world's most luxurious natural fiber. In comparison, the fiber derived from Changthangi sheep is considered next only to Pashmina. This research endeavors to compare the skin transcriptome profiles of Changthangi goats and Changthangi sheep, aiming to discern the molecular determinants behind the recognition of Changthangi goats as the source of Pashmina. Drawing upon previously conducted studies, a collective of 225 genes correlated with fiber characteristics were extracted from the differentially expressed genes noticed between the two species (p-value of ≤ 0.05 and a log2 fold change of ≥ 1.5). These genes were analyzed using DAVID software to understand their biological functions and to identify enriched KEGG and Reactome pathways. The protein-protein interaction networks were constructed using Cytoscape, cytoHubba, and STRING to focus on key genes and infer their biological significance. Comparative transcriptome analysis revealed significantly higher expression of genes involved in signaling pathways like Wnt, MAPK, PI3K-Akt, Hedgehog, associated with fiber development and quality in Changthangi goats. These pathways play crucial roles in hair follicle (HF) formation, maintenance of epidermal stem cells, and fiber characteristics. Findings also highlight the enrichment of cell adhesion molecules and ECM-receptor interaction, emphasizing their roles in HF structure, growth, and signaling. This investigation offers an in-depth understanding of the molecular intricacies governing Pashmina production in Changthangi goats, providing valuable insights into their unique genetic makeup and underlying mechanisms influencing the exceptional quality of Pashmina fibers.


Assuntos
Perfilação da Expressão Gênica , Cabras , Pele , Transcriptoma , Animais , Cabras/genética , Cabras/metabolismo , Pele/metabolismo , Ovinos/genética , Ovinos/metabolismo , Mapas de Interação de Proteínas/genética , Transdução de Sinais/genética , Lã/metabolismo , Fibra de Lã
4.
Int J Mol Sci ; 24(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36982962

RESUMO

There is mounting evidence that ancestral life experiences and environment can influence phenotypes in descendants. The parental environment regulates offspring phenotypes potentially via modulating epigenetic marks in the gametes. Here, we review examples of across-generational inheritance of paternal environmental effects and the current understanding of the role of small RNAs in such inheritance. We discuss recent advances in revealing the small RNA payload of sperm and how environmental conditions modulate sperm small RNAs. Further, we discuss the potential mechanism of inheritance of paternal environmental effects by focusing on sperm small RNA-mediated regulation of early embryonic gene expression and its role in influencing offspring phenotypes.


Assuntos
Epigênese Genética , RNA , Masculino , Animais , RNA/metabolismo , Metilação de DNA , Sêmen/metabolismo , Espermatozoides/metabolismo
5.
Genomics ; 113(4): 1639-1646, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33862183

RESUMO

The present study is an attempt to examine the differential expression of genes in longissimus thoracis muscles between meat and wool type Indian goat breeds. Barbari goat is considered the best meat breed while Changthangi is famous for its fine fibre quality. RNA sequencing data was generated from four biological replicates of longissimus thoracis muscles of Barbari and Changthangi goats. A clear demarcation could be observed between the breeds in terms of expression of genes associated with lipid metabolism (FASN, SCD, THRSP, DGAT2 and FABP3). Most significant genes with high connectivity identified by gene co-expression network analysis were associated with triacylglycerol biosynthesis pathway in Barbari goat. Highly interactive genes identified in Changthangi goat were mainly associated with muscle fibre type. This study provides an insight into the differential expression of genes in longissimus thoracis muscles between Barbari and Changthangi goats that are adapted to and reared in different agro-climatic regions.


Assuntos
Cabras , Transcriptoma , Animais , Sequência de Bases , Cabras/genética , Índia , Músculos
6.
Mol Biol Rep ; 47(9): 7029-7038, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32880836

RESUMO

BACKGROUND: The present study is an effort to understand the genomic drivers of lactation in Sahiwal (Bos indicus), the best milch cattle breed of the tropics. METHODS: RNA sequencing of four animals from early, mid and late lactation stages was performed using milk somatic cells as source of RNA. RESULTS: The genes encoding the milk casein and whey proteins showed highest expression in early and mid lactation, with a declining trend towards the late stage. The enhanced expression of PLIN2, FABP5 and FABP3 genes in mid lactation suggests enrichment of the PPARα pathway which is linked to fatty acid metabolism. A gradual decline in the percentage of genes involved in metabolism of proteins, mRNA and insulin synthesis from early to late lactation reflected transition from lactogenesis to involution. Major biological pathways maintained throughout lactation were adaptive immune system, FGF signaling, EGFR signaling, activated TLR4 signaling, NFkB and MAP kinases activation mediated by TLR4 signaling repertoire. Differential expression analysis revealed 547, 1010 and 1313 differentially expressed genes (p < 0.05) between early-late, early-mid and mid-late stages, respectively. The topmost regulatory genes identified by network analysis from the differentially expressed genes, were involved in Chemokine receptor, GPCR and EGFR1 pathways. CONCLUSION: The genes and pathways delineated in this study have regulatory implications in cell morphogenesis, lipid droplet formation and protein synthesis in the course of lactation. The study provides an insight into the expression profile of genes influencing milk properties and lactation in Sahiwal cattle.


Assuntos
Perfilação da Expressão Gênica , Redes Reguladoras de Genes/fisiologia , Lactação/fisiologia , Animais , Bovinos , Feminino , Regulação da Expressão Gênica
7.
Anim Biotechnol ; 26(2): 148-55, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25380468

RESUMO

The buffalo population of Uttar Pradesh (UP) constitutes 26.1% of the total buffalo population of India, yet this population has not been classified into distinct breeds or subpopulations due to lack of systematic study. Genetic variation at 30 microsatellite loci was examined and statistical analysis was carried out to reveal genetic diversity, demographic parameters of these buffaloes and to investigate the existence of population substructures underlying geographical distribution. The mean number of alleles per locus was 13.26 and mean effective number of alleles was 3.74, whereas mean observed and expected heterozygosities were found to be 0.57 and 0.67 in UP buffaloes. Principal component analysis (PCA) based on allele frequency data revealed subclustering of UP buffalo population. Bayesian analysis result also revealed clear membership of individuals into five clusters indicating a genetic subdivision within the UP buffalo population. The buffaloes of Western and Central regions of UP were subtly separated while buffaloes of Tarai area and Bhadawari buffaloes revealed distinctive population structure. The buffaloes of Mau, Ballia and Ghazipur districts of Eastern region also had a distinctive genetic structure. The analysis of data on buffaloes of Indo-Gangetic plains revealed that population was in mutation drift equilibrium. The observed mean M ratio in the population was above the critical significance value (Mc) suggesting that it has not suffered any severe reduction in effective population size. The statistical tests revealed a historical constancy of size of buffalo in this geographical area. The high level of genetic variability indicates UP buffalo population is a vast reservoir of genetic diversity and this shall help in taking informed conservation decisions and sustainable utilization.


Assuntos
Búfalos/genética , Variação Genética/genética , Genótipo , Animais , DNA/sangue , DNA/química , Frequência do Gene , Deriva Genética , Genética Populacional , Índia , Repetições de Microssatélites , Reação em Cadeia da Polimerase , Análise de Componente Principal
8.
bioRxiv ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39211093

RESUMO

Sperm small RNAs have been implicated in intergenerational epigenetic inheritance of paternal environmental effects; however, their biogenesis and functions remain poorly understood. We previously identified a 5' fragment of tRNA-Valine-CAC-2 (tRFValCAC) as one of the most abundant small RNA in mature sperm. tRFValCAC is specifically enriched in sperm during post-testicular maturation in the epididymis, and we found that it is delivered to sperm from epididymis epithelial cells via extracellular vesicles. Here, we investigated the mechanistic basis of tRFValCAC delivery to sperm and its functions in the early embryo. We show that tRFValCAC interacts with an RNA binding protein, heterogeneous nuclear ribonucleoprotein A/B (hnRNPAB), in the epididymis, and this interaction regulates the sorting and packing of tRFValCAC into extracellular vesicles. In the embryo, we found that tRFValCAC regulates early embryonic mRNA processing and splicing. Inhibition of tRFValCAC in preimplantation embryos altered the transcript abundance of genes involved in RNA splicing and mRNA processing. Importantly, tRFValCAC-inhibited embryos showed altered mRNA splicing, including alternative splicing of various splicing factors and genes important for proper preimplantation embryonic development. Finally, we find that inhibition of tRFValCAC in zygotes delayed preimplantation embryonic development. Together, our results reveal a novel function of a sperm-enriched tRF in regulating alternating splicing and preimplantation embryonic development and shed light on the mechanism of sperm small RNA-mediated epigenetic inheritance.

9.
Genetics ; 227(3)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38805696

RESUMO

Gregor Mendel developed the principles of segregation and independent assortment in the mid-1800s based on his detailed analysis of several traits in pea plants. Those principles, now called Mendel's laws, in fact, explain the behavior of genes and alleles during meiosis and are now understood to underlie "Mendelian inheritance" of a wide range of traits and diseases across organisms. When asked to give examples of inheritance that do NOT follow Mendel's laws, in other words, examples of non-Mendelian inheritance, students sometimes list incomplete dominance, codominance, multiple alleles, sex-linked traits, and multigene traits and cite as their sources the Khan Academy, Wikipedia, and other online sites. Against this background, the goals of this Perspective are to (1) explain to students, healthcare workers, and other stakeholders why the examples above, in fact, display Mendelian inheritance, as they obey Mendel's laws of segregation and independent assortment, even though they do not produce classic Mendelian phenotypic ratios and (2) urge individuals with an intimate knowledge of genetic principles to monitor the accuracy of learning resources and work with us and those resources to correct information that is misleading.


Assuntos
Genética , Humanos , Padrões de Herança , Alelos , Hereditariedade , Modelos Genéticos
10.
bioRxiv ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39253511

RESUMO

Sperm small RNAs are implicated in intergenerational transmission of paternal environmental effects. Small RNAs generated by cleavage of tRNAs, known as tRNA fragments (tRFs), are an abundant class of RNAs in mature sperm, and can be modulated by environmental conditions. The ribonuclease(s) responsible for the biogenesis of tRFs in the male reproductive tract remains unknown. Angiogenin, a member of the Ribonuclease A superfamily (RNase A), cleaves tRNAs to generate tRFs in response to cellular stress. Four paralogs of Angiogenin, namely Rnase9, Rnase10, Rnase11, and Rnase12, are specifically expressed in the epididymis-a long, convoluted tubule where sperm mature and acquire fertility and motility. The biological functions of these genes remain largely unknown. Here, by generating mice deleted for all four genes (Rnase9-12-/-, termed "KO" for Knock Out), we report that these genes regulate fertility and RNA processing. KO mice showed complete male sterility. KO sperm fertilized oocytes in vitro but failed to efficiently fertilize oocytes in vivo, likely due to an inability of sperm to pass through the utero-tubular junction. Intriguingly, there were decreased levels of fragments of tRNAs (tRFs) and rRNAs (rRNA-derived small RNAs or rsRNAs) in the KO epididymis and epididymal luminal fluid, implying that Rnase9-12 regulate the biogenesis and/or stability of tRFs and rsRNAs. Importantly, KO sperm showed a dramatic decrease in the levels of tRFs, demonstrating a role of Rnase9-12 in regulating sperm RNA composition. Together, our results reveal an unexpected role of four epididymis-specific non-canonical RNase A family genes in fertility and RNA processing.

11.
Gene ; 921: 148541, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38723784

RESUMO

Camels play a crucial socio-economic role in sustaining the livelihoods of millions in arid and semi-arid regions. They possess remarkable physiological attributes which enable them to thrive in extreme environments, and provide a source of meat, milk and transportation. With their unique traits, camels embody an irreplaceable source of untapped genomic knowledge. This study introduces Axiom-MaruPri, a medium-density SNP chip meticulously designed and validated for both Camelus bactrianus and Camelus dromedarius. Comprising of 182,122 SNP markers, derived from the re-sequenced data of nine Indian dromedary breeds and the double-humped Bactrian camel, this SNP chip offers 34,894 markers that display polymorphism in both species. It achieves an estimated inter-marker distance of 14 Kb, significantly enhancing the coverage of the camel genome. The medium-density chip has been successfully genotyped using 480 camel samples, achieving an impressive 99 % call rate, with 96 % of the 182,122 SNPs being highly reliable for genotyping. Phylogenetic analysis and Discriminant Analysis of Principal Components yield clear distinctions between Bactrian camels and dromedaries. Moreover, the discriminant functions substantially enhance the classification of dromedary camels into different breeds. The clustering of various camel breeds reveals an apparent correlation between geographical and genetic distances. The results affirm the efficacy of this SNP array, demonstrating high genotyping precision and clear differentiation between Bactrian and dromedary camels. With an enhanced genome coverage, accuracy and economic efficiency the Axiom_MaruPri SNP chip is poised to advance genomic breeding research in camels. It holds the potential to serve as an invaluable genetic resource for investigating population structure, genome-wide association studies and implementing genomic selection in domesticated camelid species.


Assuntos
Camelus , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Animais , Camelus/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Filogenia , Domesticação , Cruzamento/métodos , Genótipo , Técnicas de Genotipagem/métodos
12.
Gene ; 897: 148067, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38092161

RESUMO

Quantitative PCR (qPCR) is a widely-used technique for quantifying the expression of target genes across various tissues, as well as under different pathological and physiological conditions. One of the challenges associated with this method is the need to identify optimal reference genes (RGs) that maintain consistent expression levels under diverse experimental settings, thereby ensuring accurate biological interpretation. In this study, we conducted a thorough analysis of 18 candidate RGs (ACTB, BACH1, B2M, GAPDH, HMBS, HPRT1, PGK1, PPIA, PPIB, RPLP0, RPL19, RPS9, RPS15, RPS28, SDHA, TBP, UXT, and YWHAZ) across 10 ovine tissues (muscle, skin, kidney, liver, intestine, rumen, lung, testis, heart, and spleen) obtained from five individual sheep. We aimed to identify genes with stable expression across these tissues. A literature-based survey helped us shortlist candidate genes representing various functional classes from multiple livestock species. We employed four algorithms: geNorm, NormFinder, BestKeeper, and Delta Ct (ΔCt), to rank these genes based on their stability. A consistent trend in the rankings was observed across these different algorithms. RefFinder was then used for a comprehensive ranking, integrating the outputs from the various methods. ACTB, PPIB, BACH1, and B2M emerged as the most stable RGs, while RPS9, RPS15, and PGK1 displayed variable expression. We validated our findings through qPCR analysis of four target genes (ACTN2, CRYAB, DLK1, and TRIM54) in the skin samples from two different sheep breeds. Based on these results, we recommend ACTB, PPIB, BACH1, and B2M as reliable internal control genes for qPCR experiments involving diverse ovine tissues.


Assuntos
Algoritmos , Gliceraldeído-3-Fosfato Desidrogenases , Masculino , Animais , Ovinos/genética , Coração , Reação em Cadeia da Polimerase em Tempo Real/métodos , Testículo , Perfilação da Expressão Gênica/métodos , Padrões de Referência
13.
Eur J Emerg Med ; 31(2): 118-126, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37800634

RESUMO

BACKGROUND AND IMPORTANCE: Sudden cardiac arrest has a high incidence and often leads to death. A treatment option that might improve the outcomes in refractory cardiac arrest is Extracorporeal Cardiopulmonary Resuscitation (ECPR). OBJECTIVES: This study investigates the number of in-hospital cardiac arrest (IHCA) and out-of-hospital cardiac arrest (OHCA) patients eligible to ECPR and identifies clinical characteristics that may help to identify which patients benefit the most from ECPR. DESIGN, SETTINGS AND PARTICIPANTS: A retrospective two-centre study was conducted in Rotterdam, the Netherlands. All IHCA and OHCA patients between 1 January 2017 and 1 January 2020 were screened for eligibility to ECPR. The primary outcome was the percentage of patients eligible to ECPR and patients treated with ECPR. The secondary outcome was the comparison of the clinical characteristics and outcomes of patients eligible to ECPR treated with conventional Cardiopulmonary Resuscitation (CCPR) vs. those of patients treated with ECPR. MAIN RESULTS: Out of 1246 included patients, 412 were IHCA patients and 834 were OHCA patients. Of the IHCA patients, 41 (10.0%) were eligible to ECPR, of whom 20 (48.8%) patients were actually treated with ECPR. Of the OHCA patients, 83 (9.6%) were eligible to ECPR, of whom 23 (27.7%) were actually treated with ECPR. In the group IHCA patients eligible to ECPR, no statistically significant difference in survival was found between patients treated with CCPR and patients treated with ECPR (hospital survival 19.0% vs. 15.0% respectively, 4.0% survival difference 95% confidence interval -21.3 to 28.7%). In the group OHCA patients eligible to ECPR, no statistically significant difference in-hospital survival was found between patients treated with CCPR and patients treated with ECPR (13.3% vs. 21.7% respectively, 8.4% survival difference 95% confidence interval -30.3 to 10.2%). CONCLUSION: This retrospective study shows that around 10% of cardiac arrest patients are eligible to ECPR. Less than half of these patients eligible to ECPR were actually treated with ECPR in both IHCA and OHCA.


Assuntos
Reanimação Cardiopulmonar , Oxigenação por Membrana Extracorpórea , Parada Cardíaca Extra-Hospitalar , Humanos , Estudos Retrospectivos , Resultado do Tratamento , Parada Cardíaca Extra-Hospitalar/terapia
14.
Nutrients ; 15(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38140297

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a serious public health concern, which calls for appropriate diet/nutrition intervention. Fish oil (FO) has several benefits in reducing obesity, but its intergenerational role in reducing the effects of paternal obesity has not been established. Hence, we hypothesized that FO supplementation to an obese father during the pre-conceptional period could improve the metabolic health of the offspring, specifically in the liver. Three groups of male mice were fed with a low-fat (LF), high-fat (HF), or high-fat diet supplemented with FO (HF-FO) for 10 weeks and were then allowed to mate with female mice fed a chow diet. Offspring were sacrificed at 16 weeks. The liver tissue was harvested for genomic and histological analyses. The offspring of HF and HF-FO fathers were heavier compared to that of the LF mice during 9-16 weeks. The glucose tolerance of the offspring of HF-FO fathers were significantly improved as compared to the offspring of HF fathers. Paternal FO supplementation significantly lowered inflammation and fatty acid synthesis biomarkers and increased fatty acid oxidation biomarkers in the offspring liver. In summary, FO supplementation in fathers shows the potential to reduce metabolic and cardiovascular diseases through genetic means in offspring.


Assuntos
Óleos de Peixe , Hepatopatia Gordurosa não Alcoólica , Masculino , Feminino , Camundongos , Animais , Humanos , Óleos de Peixe/farmacologia , Óleos de Peixe/metabolismo , Obesidade/prevenção & controle , Obesidade/metabolismo , Suplementos Nutricionais , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo , Pai , Biomarcadores/metabolismo , Ácidos Graxos/metabolismo , Camundongos Endogâmicos C57BL
15.
Gene ; 885: 147691, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37544337

RESUMO

Goats are the supporting pillars of rural economy contributing significantly to meat and milk production in India. It is a species targeted for fulfilling the interdependent goals of poverty reduction and creation of employment for supporting the rural income. The increased demand for goat products necessitates their genetic characterization and improvement to augment the production of native breeds. Bi-allelic, genome wide, densely placed single nucleotide polymorphism (SNP) markers are most suitable for this purpose. This paper describes the design and validation of an Affymetrix Axiom-based high-density (HD) SNP chip for goats. The array was designed using a panel of 225 samples from 15 diverse goat breeds of India. In total, more than 38 million high quality SNPs were subjected to stringent filtering and 626,975 SNPs were finally tiled on the array. The average coverage of SNPs in our chip is one SNP per four kilobase (kb), providing a denser coverage of the goat genome than previously available arrays. The HD chip (Axiom_Cahi) was validated by genotyping 443 samples from 26 indigenous goat breeds/populations. The results revealed 95.83% markers to be highly informative and polymorphic in Indian goats. Multivariate analysis indicated population structuring, as 15 breeds could be segregated using the designed array. Phylogenetic analysis suggested stratification of breeds by geographic proximity. This HD SNP chip for goats is a valuable resource for genomic selection, genome wide association as well as population genetic studies in goats.


Assuntos
Estudo de Associação Genômica Ampla , Cabras , Animais , Filogenia , Cabras/genética , Genômica , Genoma , Polimorfismo de Nucleotídeo Único
16.
Gene ; 880: 147627, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37429369

RESUMO

To contribute to the knowledge of maternal genetic diversity in domestic donkeys, this study investigated the mitochondrial DNA variations and analyzed the genetic structure in Indian donkeys based on 31 mitogenome sequences representing four breeds/populations (Agra, Halari, Kachchhi and Spiti). A total of 27 haplotypes with a haplotype diversity value of 0.989 were evident in the donkey genetic resources of India. The genetic differentiation between the investigated populations was evaluated using population pairwise FST values, which showed maximum differentiation between Kachchhi and Halari donkeys. The Neighbor-Joining (NJ) tree based on the whole mitogenome sequence and the Median-Joining (MJ) network for partial D-loop fragment showed clear demarcation of Indian donkeys into Nubian and Somali clades, substantiating African maternal origin of Indian domestic donkeys. The topology of the MJ network excluded the Asian wild asses as the possible progenitors of Indian donkeys. Halari and Agra donkeys showed conformity exclusively to the Nubian lineage of the African wild asses. However, representation of both the Nubian and Somali lineages was observed in Kachchhi and Spiti donkeys. Comprehensive analysis carried out by retrieving D-loop sequences from different countries representing Asia, Africa, Europe and South America revealed existence of shared haplotypes across geographically isolated regions of the globe. This observation is indicative of utility of donkeys as pack animals across inter-continental trading routes during development of human civilizations. Our results represent a valuable contribution to maternal genetic diversity of Indian donkeys and provide insights into the worldwide spread of the species following initial domestication in Africa.


Assuntos
DNA Mitocondrial , Equidae , Animais , Humanos , Equidae/genética , Filogenia , DNA Mitocondrial/genética , África , Domesticação , Haplótipos , Variação Genética
17.
Gene ; 764: 145101, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-32877747

RESUMO

India is the world's largest milk producing country because of massive contribution made by cattle and buffaloes. In the present investigation, comprehensive comparative profiling of transcriptomic landscape of milk somatic cells of Sahiwal cattle and Murrah buffaloes was carried out. Genes with highest transcript abundance in both species were enriched for biological processes such as lactation, immune response, cellular oxidant detoxification and response to hormones. Analysis of differential expression identified 377 significantly up-regulated and 847 significantly down-regulated genes with fold change >1.5 in Murrah buffaloes as compared to Sahiwal cattle (padj <0.05). Marked enrichment of innate and adaptive immune response related GO terms and higher expression of genes for various host defense peptides such as lysozyme, defensin ß and granzymes were evident in buffaloes. Genes related to ECM-receptor interaction, complement and coagulation cascades, cytokine-cytokine receptor interaction and keratinization pathway showed more abundant expression in cattle. Network analysis of the up-regulated genes delineated highly connected genes representing immunity and haematopoietic cell lineage (CBL, CD28, CD247, PECAM1 and ITGA4). For the down-regulated dataset, genes with highest interactions were KRT18, FGFR1, GPR183, ITGB3 and DKK3. Our results lend support to more robust immune mechanisms in buffaloes, possibly explaining lower susceptibility to mammary infections as compared to cattle.


Assuntos
Búfalos/imunologia , Bovinos/imunologia , Imunidade/genética , Transcriptoma/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Búfalos/genética , Bovinos/genética , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Regulação para Baixo/imunologia , Feminino , Hematopoese/genética , Hematopoese/imunologia , Índia , Lactação/genética , Lactação/imunologia , Leite/citologia , Leite/imunologia , RNA-Seq , Transcriptoma/genética , Regulação para Cima/imunologia
18.
Sci Rep ; 10(1): 6050, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32269277

RESUMO

Pashmina, the world's finest natural fiber is derived from secondary hair follicles of Changthangi goats which are domesticated in Ladakh region of Jammu and Kashmir by nomadic pastoralists. Complex epithelial-mesenchymal interactions involving numerous signal molecules and signaling pathways govern hair follicle morphogenesis and mitosis across different species. The present study involved transcriptome profiling of skin from fiber type Changthangi goats and meat type Barbari goats to unravel gene networks and metabolic pathways that might contribute to Pashmina development. In Changthangi goats, 525 genes were expressed at significantly higher levels and 54 at significantly lower levels with fold change >2 (padj < 0.05). Functional annotation and enrichment analysis identified significantly enriched pathways to be formation of the cornified envelope, keratinization and developmental biology. Expression of genes for keratins (KRTs) and keratin-associated proteins (KRTAPs) was observed to be much higher in Changthangi goats. A host of transcriptional regulator genes for hair follicle keratin synthesis such as GPRC5D, PADI3, HOXC13, FOXN1, LEF1 and ELF5 showed higher transcript abundance in Pashmina producing goats. Positive regulation of Wnt signaling pathway and negative regulation of Oncostatin M signaling pathway may be speculated to be important contributors to hair follicle development and hair shaft differentiation in Changthangi goats.


Assuntos
Cabras/genética , Folículo Piloso/fisiologia , Animais , Diferenciação Celular , Proteínas Ricas em Prolina do Estrato Córneo/genética , Transição Epitelial-Mesenquimal , Perfilação da Expressão Gênica , Queratinas/genética , Anotação de Sequência Molecular , Oncostatina M/metabolismo , Receptores Acoplados a Proteínas G/genética , Têxteis , Transcriptoma , Via de Sinalização Wnt
19.
Elife ; 92020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32729827

RESUMO

Following testicular spermatogenesis, mammalian sperm continue to mature in a long epithelial tube known as the epididymis, which plays key roles in remodeling sperm protein, lipid, and RNA composition. To understand the roles for the epididymis in reproductive biology, we generated a single-cell atlas of the murine epididymis and vas deferens. We recovered key epithelial cell types including principal cells, clear cells, and basal cells, along with associated support cells that include fibroblasts, smooth muscle, macrophages and other immune cells. Moreover, our data illuminate extensive regional specialization of principal cell populations across the length of the epididymis. In addition to region-specific specialization of principal cells, we find evidence for functionally specialized subpopulations of stromal cells, and, most notably, two distinct populations of clear cells. Our dataset extends on existing knowledge of epididymal biology, and provides a wealth of information on potential regulatory and signaling factors that bear future investigation.


Assuntos
Epididimo/citologia , Camundongos/anatomia & histologia , Ducto Deferente/citologia , Animais , Masculino , Análise de Célula Única
20.
Front Cell Dev Biol ; 7: 215, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681757

RESUMO

The most fundamental process for the perpetuation of a species is the transfer of information from parent to offspring. Although genomic DNA contributes to the majority of the inheritance, it is now clear that epigenetic information -information beyond the underlying DNA sequence - is also passed on to future generations. However, the mechanism and extent of such inheritance are not well-understood. Here, I review some of the concepts, evidence, and mechanisms of intergenerational epigenetic inheritance via sperm small RNAs. Recent studies provide evidence that mature sperm are highly abundant in small non-coding RNAs. These RNAs are modulated by paternal environmental conditions and potentially delivered to the zygote at fertilization, where they can regulate early embryonic development. Intriguingly, sperm small RNA payload undergoes dramatic changes during testicular and post-testicular maturation, making the mature sperm epigenome highly unique and distinct from testicular germ cells. I explore the mechanism of sperm small RNA remodeling during post-testicular maturation in the epididymis, and the potential role of this reprograming in intergenerational epigenetic inheritance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA